cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007488 Primes whose reversal is a square.

Original entry on oeis.org

61, 163, 487, 691, 1297, 1861, 4201, 4441, 4483, 5209, 5227, 9049, 9631, 12391, 14437, 16141, 16987, 61483, 63211, 65707, 65899, 67057, 69481, 92767, 94273, 96979, 106303, 108061, 123031, 123373, 125329, 127291, 129643, 142771, 146857, 148249, 165901
Offset: 1

Views

Author

Keywords

Comments

Number of terms less than 10^k: 0, 0, 1, 4, 13, 26, 74, 213, 615, 1773, 5000, 14356, 41474, 120186, 352310, 1035235, ... - Muniru A Asiru, Jan 19 2018 and David A. Corneth, Jan 12 2019

Examples

			61 is in the sequence because 16 = 4^2.
163 is in the sequence because 361 = 19^2.
167 is not in the sequence because 761 is also prime, not a square.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 113.
  • Charles W. Trigg, Primes with Reverses That Are Powers, J. Rec. Math., 17 (1985), 172-176.

Crossrefs

Cf. A059007, A068989. See A132388 for another version.
Primes whose reversal is a k-th power: A057699 (k=3), A058996 (k=4), A059000 (k=5), A059001 (k=6), A059002 (k=7), A059003 (k=8), A350363 (k=9), A059005 (k=10).

Programs

  • Magma
    [p: p in PrimesUpTo(150000)|IsSquare(Seqint(Reverse(Intseq(p))))];// Marius A. Burtea, Jan 12 2019
  • Maple
    revdigs:= proc(n)
    local L,nL,j;
    L:= convert(n,base,10);
    nL:= nops(L);
    add(L[i]*10^(nL-i),i=1..nL);
    end:
    map(proc(i) local r; r:= revdigs(i^2); if isprime(r) then r else NULL fi end proc, {$1..9999}); # Robert Israel, Aug 14 2014
  • Mathematica
    Select[Prime[Range[16000]], IntegerQ[Sqrt[ToExpression[StringReverse[ToString[#]]]]] &]
    Select[Prime[Range[16000]], IntegerQ[Sqrt[FromDigits[ Reverse[ IntegerDigits[ #]]]]] &] (* Harvey P. Dale, Jul 19 2011 *)
    Select[Prime@ Range[10^5], IntegerQ@ Sqrt@ IntegerReverse@ # &] (* Michael De Vlieger, Jan 20 2018 *)
  • PARI
    is(n)=isprime(n) && issquare(fromdigits(Vecrev(digits(n)))) \\ Charles R Greathouse IV, Feb 06 2017
    
  • PARI
    uptoQdigits(n) = {my(res=List(), i2); for(i=4, sqrtint(10^n), i2 = i^2; if(i%10!=0 && gcd(10, i2 \ (10^logint(i2, 10))) == 1, c=fromdigits(Vecrev(digits(i2))); if(isprime(c), listput(res,c) ) ) ); listsort(res); res } \\ David A. Corneth, Jan 12 2019
    
  • Python
    from gmpy2 import is_square
    from sympy import prime
    A007488 = [prime(n) for n in range(1,10**6) if is_square(int(str(prime(n))[::-1]))] # Chai Wah Wu, Aug 14 2014