A007491 Smallest prime > n^2.
2, 5, 11, 17, 29, 37, 53, 67, 83, 101, 127, 149, 173, 197, 227, 257, 293, 331, 367, 401, 443, 487, 541, 577, 631, 677, 733, 787, 853, 907, 967, 1031, 1091, 1163, 1229, 1297, 1373, 1447, 1523, 1601, 1693, 1777, 1861, 1949, 2027, 2129, 2213, 2309, 2411, 2503
Offset: 1
References
- Archimedeans Problems Drive, Eureka, 24 (1961), 20.
- J. R. Goldman, The Queen of Mathematics, 1998, p. 82.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 19.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Jean-Christophe Hervé, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- Eric Weisstein's World of Mathematics, Landau's Problem.
- Eric Weisstein's World of Mathematics, Legendre's Conjecture.
Programs
-
Haskell
a007491 = a007918 . a000290 -- Reinhard Zumkeller, Jun 07 2015
-
Magma
[NextPrime(n^2): n in [1..50]]; // Vincenzo Librandi, Apr 30 2015
-
Maple
[seq(nextprime(i^2), i=1..100)];
-
Mathematica
NextPrime[Range[60]^2] (* Harvey P. Dale, Mar 24 2011 *)
-
PARI
vector(100,i,nextprime(i^2))
-
Python
from sympy import nextprime def a(n): return nextprime(n**2) print([a(n) for n in range(1, 51)]) # Michael S. Branicky, Jan 13 2023
Formula
Extensions
More terms from Labos Elemer, Nov 17 2000
Definition modified by Jean-Christophe Hervé, Oct 26 2013
Comments