cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007491 Smallest prime > n^2.

Original entry on oeis.org

2, 5, 11, 17, 29, 37, 53, 67, 83, 101, 127, 149, 173, 197, 227, 257, 293, 331, 367, 401, 443, 487, 541, 577, 631, 677, 733, 787, 853, 907, 967, 1031, 1091, 1163, 1229, 1297, 1373, 1447, 1523, 1601, 1693, 1777, 1861, 1949, 2027, 2129, 2213, 2309, 2411, 2503
Offset: 1

Views

Author

Keywords

Comments

Suggested by Legendre's conjecture (still open) that there is always a prime between n^2 and (n+1)^2.
Legendre's conjecture is equivalent to a(n) < (n+1)^2. - Jean-Christophe Hervé, Oct 26 2013
From Jaroslav Krizek, Apr 02 2016: (Start)
Conjectures:
1) There is always a prime p between n^2 and n^2+n (verified up to 13*10^6).
2) a(n) is the smallest prime p such that n^2 < p < n^2+n; a(n) < n^2+n.
3) For all numbers k >= 1 there is the smallest number m > 2*(k+1) such that for all numbers n >= m there is always a prime p between n^2 and n^2 + n - 2k. Sequence of numbers m for k >= 1: 6, 8, 12, 13, 14, 24, 24, 24, 30, 30, 30, 31, 33, 35, 43, ...; lim_{k->oo} m/2k = 1. Example: k=2; for all numbers n >= 8 there is always a prime p between n^2 and n^2 + n - 4. (End)

References

  • Archimedeans Problems Drive, Eureka, 24 (1961), 20.
  • J. R. Goldman, The Queen of Mathematics, 1998, p. 82.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 19.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a007491 = a007918 . a000290  -- Reinhard Zumkeller, Jun 07 2015
    
  • Magma
    [NextPrime(n^2): n in [1..50]]; // Vincenzo Librandi, Apr 30 2015
    
  • Maple
    [seq(nextprime(i^2), i=1..100)];
  • Mathematica
    NextPrime[Range[60]^2]  (* Harvey P. Dale, Mar 24 2011 *)
  • PARI
    vector(100,i,nextprime(i^2))
    
  • Python
    from sympy import nextprime
    def a(n): return nextprime(n**2)
    print([a(n) for n in range(1, 51)]) # Michael S. Branicky, Jan 13 2023

Formula

a(n) = A007918(A000290(n)). - Reinhard Zumkeller, Jun 07 2015

Extensions

More terms from Labos Elemer, Nov 17 2000
Definition modified by Jean-Christophe Hervé, Oct 26 2013