cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007497 a(1) = 2, a(n) = sigma(a(n-1)).

Original entry on oeis.org

2, 3, 4, 7, 8, 15, 24, 60, 168, 480, 1512, 4800, 15748, 28672, 65528, 122880, 393192, 1098240, 4124736, 15605760, 50328576, 149873152, 371226240, 1710858240, 7926750720, 33463001088, 109760857440, 384120963072, 1468475386560, 7157589626880, 33151875434496
Offset: 1

Views

Author

Keywords

Comments

Note that a(32) = 125038913126400 = 11182080^2. - Zak Seidov, Aug 29 2012

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000203, A175877 (positions of odd terms), A175878 (odd terms).
See also the similarly defined A051572 which has a(1) = 5 instead.
See also A257348.

Programs

  • Haskell
    a007497 n = a007497_list !! (n-1)
    a007497_list = iterate a000203 2  -- Reinhard Zumkeller, Feb 27 2014
    
  • Maple
    A007497 := proc(n) options remember; if n <= 0 then RETURN(2) else numtheory[sigma](procname(n-1)); fi; end proc:
  • Mathematica
    a[1] = 2; a[n_] := a[n] = DivisorSigma[1, a[n-1]]; Table[a[n], {n, 30}]
    NestList[ DivisorSigma[1, # ] &, 2, 27] (* Robert G. Wilson v, Oct 08 2010 *)
  • PARI
    normalize(M)={
        my(P=Set(M[,1]),f=concat(Mat(P),vector(#P))~);
        for(i=1,#M~,
            f[setsearch(P,M[i,1]),2] += M[i,2]
        );
        f
    };
    addhelp(normalize, "normalize(M): Given a factorization matrix M, combine all like factors and order.");
    sf(f)=my(v=vector(#f~,i,(f[i,1]^(f[i,2]+1)-1)/(f[i,1]-1)), g=factor(v[1])~);for(i=2,#v,g=concat(g,factor(v[i])~));normalize(g~)
    v=vector(100);v[1]=2;f=factor(2);for(i=2,#v,print1(i" "); v[i]= factorback(f=sf(f))); v \\ Charles R Greathouse IV, Mar 27 2014
    
  • Python
    from itertools import accumulate, repeat # requires Python 3.2 or higher
    from sympy import divisor_sigma
    A007497_list = list(accumulate(repeat(2,100), lambda x, _: divisor_sigma(x)))
    # Chai Wah Wu, May 02 2015

Formula

Conjecture: (1/2)*log(n) < a(n+1)/a(n) < 2*log(n). - Benoit Cloitre, May 08 2003
Conjecture: a(n) == 0 mod 9 for n > 34. - Ivan N. Ianakiev, Mar 27 2014
Checked up to n = 1000. Similar statements hold for other small primes. For example, a(n) seems to be divisible by 2^22 * 3^5 * 5 * 7 = 35672555520 for all n > 99. - Charles R Greathouse IV, Mar 27 2014

Extensions

Changed the cross-reference from the tau to the sigma-function - R. J. Mathar, Feb 17 2010