cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007498 Unique period lengths of primes mentioned in A007615.

Original entry on oeis.org

1, 2, 3, 4, 9, 10, 12, 14, 19, 23, 24, 36, 38, 39, 48, 62, 93, 106, 120, 134, 150, 196, 294, 317, 320, 385, 586, 597, 654, 738, 945, 1031, 1172, 1282, 1404, 1426, 1452, 1521, 1752, 1812, 1836, 1844, 1862, 2134, 2232, 2264, 2667, 3750, 3903, 3927, 4274, 4354
Offset: 1

Views

Author

Keywords

Comments

Let {Zs(m, 10, 1)} be the Zsigmondy numbers for a = 10, b = 1: Zs(m, 10, 1) is the greatest divisor of 10^m - 1^m that is coprime to 10^r - 1^r for all positive integers r < m. Then this sequence gives m such that Zs(m, 10, 1) is a prime power (e.g., Zs(1, 10, 1) = 9 = 3^2, Zs(2, 10, 1) = 11, Zs(3, 10, 1) = 37, Zs(4, 10, 1) = 101). It is very likely that Zs(m, 10, 1) is prime if m > 1 is in this sequence (note that the Mathematica and PARI programs below are based on this assumption). - Jianing Song, Aug 12 2020

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Samuel Yates, Period Lengths of Exactly One or Two Prime Numbers, J. Rec. Math., 18 (1985), 22-24.

Crossrefs

Cf. A161508 (unique period lengths in base 2).

Programs

  • Mathematica
    lst={1}; Do[p=Cyclotomic[n, 10]/GCD[n, Cyclotomic[n, 10]]; If[PrimeQ[p], AppendTo[lst, n]], {n, 3000}]; lst (* T. D. Noe, Sep 08 2005 *)
  • PARI
    isok(n) = if (n==1, 1, my(p = polcyclo(n, 10)); isprime(p/gcd(p, n))); \\ Michel Marcus, Jun 20 2018

Extensions

More terms from T. D. Noe, Sep 08 2005
a(48)-a(52) from Ray Chandler, Jul 09 2008