cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007502 Les Marvin sequence: a(n) = F(n) + (n-1)*F(n-1), F() = Fibonacci numbers.

Original entry on oeis.org

1, 2, 4, 9, 17, 33, 61, 112, 202, 361, 639, 1123, 1961, 3406, 5888, 10137, 17389, 29733, 50693, 86204, 146246, 247577, 418299, 705479, 1187857, 1997018, 3352636, 5621097, 9412937, 15744681, 26307469, 43912648
Offset: 1

Views

Author

Keywords

Comments

Denominators of convergents of the continued fraction with the n partial quotients: [1;1,1,...(n-1 1's)...,1,n], starting with [1], [1;2], [1;1,3], [1;1,1,4], ... Numerators are A088209(n-1). - Paul D. Hanna, Sep 23 2003

Examples

			a(7) = F(7) + 6*F(6) = 13 + 6*8 = 61.
		

References

  • Les Marvin, Problem, J. Rec. Math., Vol. 10 (No. 3, 1976-1977), p. 213.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000045, A045925, A088209 (numerators), A101220, A109754.

Programs

  • Haskell
    a007502 n = a007502_list !! (n-1)
    a007502_list = zipWith (+) a045925_list $ tail a000045_list
    -- Reinhard Zumkeller, Oct 01 2012, Mar 04 2012
    
  • Julia
    # The function 'fibrec' is defined in A354044.
    function A007502(n)
        n == 0 && return BigInt(1)
        a, b = fibrec(n-1)
        (n-1)*a + b
    end
    println([A007502(n) for n in 1:32]) # Peter Luschny, May 18 2022
    
  • Magma
    A007502:= func< n | Fibonacci(n) +(n-1)*Fibonacci(n-1) >;
    [A007502(n): n in [1..40]]; // G. C. Greubel, Aug 26 2025
    
  • Mathematica
    Table[Fibonacci[n]+(n-1)*Fibonacci[n-1], {n,40}] (* or *) LinearRecurrence[ {2,1,-2,-1}, {1,2,4,9}, 40](* Harvey P. Dale, Jul 13 2011 *)
    f[n_] := Denominator@  FromContinuedFraction@ Join[ Table[1, {n}], {n + 1}]; Array[f, 30, 0] (* Robert G. Wilson v, Mar 04 2012 *)
  • PARI
    Vec((1-x^2+x^3)/(1-x-x^2)^2+O(x^99)) \\ Charles R Greathouse IV, Mar 04 2012
    
  • SageMath
    def A007502(n): return fibonacci(n) +(n-1)*fibonacci(n-1)
    print([A007502(n) for n in range(1,41)]) # G. C. Greubel, Aug 26 2025

Formula

G.f.: (1-x^2+x^3)/(1-x-x^2)^2. - Paul D. Hanna, Sep 23 2003
a(n+1) = A109754(n, n+1) = A101220(n, 0, n+1). - N. J. A. Sloane, May 19 2006
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4) for n>3, a(0)=1, a(1)=2, a(2)=4, a(3)=9. - Harvey P. Dale, Jul 13 2011
E.g.f.: exp(x/2)*( ((3 + 2*x)/sqrt(5))*sinh(sqrt(5)*x/2) - cosh(sqrt(5)*x/2) ) + 1. - G. C. Greubel, Aug 26 2025