A007502 Les Marvin sequence: a(n) = F(n) + (n-1)*F(n-1), F() = Fibonacci numbers.
1, 2, 4, 9, 17, 33, 61, 112, 202, 361, 639, 1123, 1961, 3406, 5888, 10137, 17389, 29733, 50693, 86204, 146246, 247577, 418299, 705479, 1187857, 1997018, 3352636, 5621097, 9412937, 15744681, 26307469, 43912648
Offset: 1
Examples
a(7) = F(7) + 6*F(6) = 13 + 6*8 = 61.
References
- Les Marvin, Problem, J. Rec. Math., Vol. 10 (No. 3, 1976-1977), p. 213.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..500
- Ignas Gasparavičius, Andrius Grigutis, and Juozas Petkelis, Picturesque convolution-like recurrences and partial sums' generation, arXiv:2507.23619 [math.NT], 2025. See p. 27.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-2,-1).
Programs
-
Haskell
a007502 n = a007502_list !! (n-1) a007502_list = zipWith (+) a045925_list $ tail a000045_list -- Reinhard Zumkeller, Oct 01 2012, Mar 04 2012
-
Julia
# The function 'fibrec' is defined in A354044. function A007502(n) n == 0 && return BigInt(1) a, b = fibrec(n-1) (n-1)*a + b end println([A007502(n) for n in 1:32]) # Peter Luschny, May 18 2022
-
Magma
A007502:= func< n | Fibonacci(n) +(n-1)*Fibonacci(n-1) >; [A007502(n): n in [1..40]]; // G. C. Greubel, Aug 26 2025
-
Mathematica
Table[Fibonacci[n]+(n-1)*Fibonacci[n-1], {n,40}] (* or *) LinearRecurrence[ {2,1,-2,-1}, {1,2,4,9}, 40](* Harvey P. Dale, Jul 13 2011 *) f[n_] := Denominator@ FromContinuedFraction@ Join[ Table[1, {n}], {n + 1}]; Array[f, 30, 0] (* Robert G. Wilson v, Mar 04 2012 *)
-
PARI
Vec((1-x^2+x^3)/(1-x-x^2)^2+O(x^99)) \\ Charles R Greathouse IV, Mar 04 2012
-
SageMath
def A007502(n): return fibonacci(n) +(n-1)*fibonacci(n-1) print([A007502(n) for n in range(1,41)]) # G. C. Greubel, Aug 26 2025
Formula
G.f.: (1-x^2+x^3)/(1-x-x^2)^2. - Paul D. Hanna, Sep 23 2003
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4) for n>3, a(0)=1, a(1)=2, a(2)=4, a(3)=9. - Harvey P. Dale, Jul 13 2011
E.g.f.: exp(x/2)*( ((3 + 2*x)/sqrt(5))*sinh(sqrt(5)*x/2) - cosh(sqrt(5)*x/2) ) + 1. - G. C. Greubel, Aug 26 2025
Comments