A007506 Primes p with property that p divides the sum of all primes <= p.
2, 5, 71, 369119, 415074643, 55691042365834801
Offset: 1
Examples
2 divides 2; 5 divides 2 + 3 + 5; 71 divides 2 + 3 + 5 + 7 + ... + 61 + 67 + 71; etc.
References
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 71, p. 25, Ellipses, Paris 2008.
- Harry L. Nelson, Prime Sums, J. Rec. Math., 14 (1981), 205-206.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 129.
Links
- H. L. Nelson, Letter to the Editor re: Prime Sums, J. Recreational Mathematics 14.3 (1981-2), 205. (Annotated scanned copy)
- Carlos Rivera, Puzzle 18. Some special sums of consecutive primes, The Prime Puzzles and Problems Connection.
Programs
-
Mathematica
sumOfPrimes = 0; Do[ sumOfPrimes += p; If[ Divisible[ sumOfPrimes, p], Print[p]], {p, Prime /@ Range[23000000]}] (* Jean-François Alcover, Oct 22 2012 *) Transpose[Module[{nn=23000000,pr},pr=Prime[Range[nn]];Select[Thread[ {Accumulate[ pr], pr}], Divisible[#[[1]],#[[2]]]&]]][[2]] (* Harvey P. Dale, Feb 09 2013 *)
-
PARI
s=0;forprime(p=2,1e9,s+=p;if(s%p==0,print1(p", "))) \\ Charles R Greathouse IV, Jul 22 2013
Extensions
Example corrected by Harvey P. Dale, Feb 09 2013
a(6) from Paul W. Dyson, Apr 16 2022
Comments