A007540 Wilson primes: primes p such that (p-1)! == -1 (mod p^2).
5, 13, 563
Offset: 1
References
- N. G. W. H. Beeger, On the Congruence (p-1)! == -1 (mod p^2), Messenger of Mathematics, Vol. 49 (1920), pp. 177-178.
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 52.
- Calvin C. Clawson, Mathematical Mysteries, Plenum Press, 1996, p. 180.
- Richard Crandall and Carl Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see p. 29.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 80.
- G. B. Mathews, Theory of Numbers Part I., Cambridge: Deighton, Bell and Co., London: George Bell and Sons, 1892, page 318.
- Paulo Ribenboim, My Numbers, My Friends: Popular Lectures on Number Theory, Springer Science & Business Media, 2000, ISBN 0-387-98911-0.
- Paulo Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 277.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 234-235.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Ilan Vardi, Computational Recreations in Mathematica. Addison-Wesley, Redwood City, CA, 1991, p. 73.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, NY, 1986, p. 163.
Links
- N. G. W. H. Beeger, Quelques remarques sur les congruences r^(p-1) == 1 (mod p^2) et (p- 1)! == -1 (mod p^2), The Messenger of Mathematics, Vol. 43 (1913), pp. 72-84.
- Edgar Costa, Robert Gerbicz and David Harvey, A search for Wilson primes, Mathematics of Computation, Vol. 83, No. 290 (2014), pp. 3071-3091; arXiv preprint, arXiv:1209.3436 [math.NT], 2012.
- R. Crandall, K. Dilcher and C. Pomerance, A search for Wieferich and Wilson primes, Mathematics of Computation, 66 (1997), 433-449.
- Karl Goldberg, A Table of Wilson Quotients and the Third Wilson Prime, Journal of the London Mathematical Society, Vol. 28 (1953), pp. 252-256.
- James Grime and Brady Haran, What do 5, 13 and 563 have in common?, YouTube video (2014).
- Emma Lehmer, A Note on Wilson's Quotient, The American Mathematical Monthly, Vol. 44, No. 4 (1937), pp. 237-238.
- Emma Lehmer, On the Congruence (p-1)! == -1 (mod p^2), The American Mathematical Monthly, Vol. 44, No. 7 (1937), p. 462.
- Emma Lehmer, On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson", Annals of Mathematics, Vol. 39, No. 2 (1938), pp. 350-360.
- George Ballard Mathews, Theory of numbers, Part I, Cambridge, 1892, p. 318.
- Tapio Rajala, Status of a search for Wilson primes
- Maxie D. Schmidt, New Congruences and Finite Difference Equations for Generalized Factorial Functions, arXiv:1701.04741 [math.CO], 2017.
- Jonathan Sondow, Lerch Quotients, Lerch Primes, Fermat-Wilson Quotients, and the Wieferich-Non-Wilson Primes 2, 3, 14771, In: M. B. Nathanson, Combinatorial and Additive Number Theory, Springer, CANT 2011 and 2012. Also on arXiv, arXiv:1110.3113 [math.NT], 2011-2012.
- Apoloniusz Tyszka, On sets X subset of N for which we know an algorithm that computes a threshold number t(X) in N such that X is infinite if and only if X contains an element greater than t(X), 2019.
- Eric Weisstein's World of Mathematics, Wilson Prime.
- Eric Weisstein's World of Mathematics, Integer Sequence Primes.
- Wikipedia, Wilson prime.
- Paul Zimmermann, Records for prime numbers.
Programs
-
Mathematica
Select[Prime[Range[500]], Mod[(# - 1)!, #^2] == #^2 - 1 &] (* Harvey P. Dale, Mar 30 2012 *)
-
PARI
forprime(n=2, 10^9, if(Mod((n-1)!, n^2)==-1, print1(n, ", "))) \\ Felix Fröhlich, Apr 28 2014
-
PARI
is(n)=prod(k=2,n-1,k,Mod(1,n^2))==-1 \\ Charles R Greathouse IV, Aug 03 2014
-
Python
from sympy import prime A007540_list = [] for n in range(1,10**4): p, m = prime(n), 1 p2 = p*p for i in range(2,p): m = (m*i) % p2 if m == p2-1: A007540_list.append(p) # Chai Wah Wu, Dec 04 2014
Comments