cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007558 Shifts 2 places left when e.g.f. is squared.

Original entry on oeis.org

1, 1, 1, 2, 4, 10, 30, 100, 380, 1600, 7400, 37400, 204600, 1205600, 7612000, 51260000, 366784000, 2778820000, 22222332000, 187067320000, 1653461480000, 15310662400000, 148217381840000, 1497226615280000, 15754506226800000, 172407188412800000
Offset: 0

Views

Author

Keywords

References

  • O Bodini, M Dien, X Fontaine, A Genitrini, H K Hwang, Increasing Diamonds, in LATIN 2016: 12th Latin American Symposium, Ensenada, Mexico, April 11-15, 2016, Proceedings Pages pp 207-219 2016 DOI 10.1007/978-3-662-49529-2_16 Lecture Notes in Computer Science Series Volume 9644
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    a:= proc(n) option remember;
          `if`(n<2, 1, add(a(i)*a(n-2-i) *binomial(n-2, i), i=0..n-2))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jun 22 2012
  • Mathematica
    a[n_] := a[n] = If[n < 2, 1, Sum[a[i] * a[n - 2 - i] * Binomial[n - 2, i], {i, 0, n - 2}]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 03 2014, after Alois P. Heinz *)
    Table[SeriesCoefficient[1 + (18 (WeierstrassP[x, {0, -1/108}] - WeierstrassPPrime[x, {0, -1/108}]))/(6 WeierstrassP[x, {0, -1/108}] - 1)^2, {x, 0, k}] k!, {k, 0, 30}] (* Jan Mangaldan, Nov 27 2020 *)

Formula

a(n) ~ c * d^n * n! * n, where d = 0.42089835222875301896706732846764190595145230471243866202153775712470703269... is the root of the equation WeierstrassP(1/d, 0, -1/108) = 1/6 and c = 1.06293253745327664869312823202016275205862332741406172188742740834633... - Vaclav Kotesovec, Sep 06 2014, updated Nov 27 2020
E.g.f.: 6^(1/3) * WeierstrassP((x+c)/6^(1/3), 0, -1/3), where c = 9.1898572290187191497581591181140131456801040793456712149069964791654... is the root of the equation WeierstrassP(c/6^(1/3), 0, -1/3) = 6^(-1/3). - Vaclav Kotesovec, Jun 14 2015
E.g.f. A(x) satisfies: A(x) = 1 + x + Integral(Integral A(x)^2 dx) dx. - Ilya Gutkovskiy, Jul 04 2020