cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A035012 One half of 9-factorial numbers.

Original entry on oeis.org

1, 11, 220, 6380, 242440, 11394680, 638102080, 41476635200, 3069271004800, 254749493398400, 23436953392652800, 2367132292657932800, 260384552192372608000, 30985761710892340352000, 3966177498994219565056000, 543366317362208080412672000, 79331482334882379740250112000
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 1 select 1 else (9*n-7)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 18 2022
    
  • Mathematica
    s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 10, 2*5!, 9}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
    Table[9^n*Pochhammer[2/9, n]/2, {n, 40}] (* G. C. Greubel, Oct 18 2022 *)
  • SageMath
    [9^n*rising_factorial(2/9,n)/2 for n in range(1,40)] # G. C. Greubel, Oct 18 2022

Formula

2*a(n) = (9*n-7)(!^9) := Product_{j=1..n} (9*j - 7).
E.g.f.: (-1+(1-9*x)^(-2/9))/2.
From G. C. Greubel, Oct 18 2022: (Start)
a(n) = (1/2) * 9^n * Pochhammer(n, 2/9).
a(n) = (9*n-7)*a(n-1). (End)
From Amiram Eldar, Dec 21 2022: (Start)
a(n) = A084949(n)/2.
Sum_{n>=1} 1/a(n) = 2*(e/9^7)^(1/9)*(Gamma(2/9) - Gamma(2/9, 1/9)). (End)

A063902 a(n+1) = sum{j = 0,...n}[C(2n,2j)a(j)a(n-j)] with a(0) = 1.

Original entry on oeis.org

1, 1, 2, 10, 80, 1000, 17600, 418000, 12848000, 496672000, 23576960000, 1348404640000, 91442700800000, 7255463564800000, 665885747225600000, 69994087116448000000, 8354181454767104000000, 1123646013779238400000000, 169165728883243642880000000
Offset: 0

Views

Author

Henry Bottomley, Aug 30 2001

Keywords

Comments

Define e.g.f. A(x) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)!. Then A(x) = P(z + x/sqrt(6)) where P is the Weierstrass P-function with g_2 = 0, g_3 = 4 and z = 2.10327313773966...*i satisfies P(z) = 1, P'(z) = 0. - Michael Somos, Apr 18 2022

Examples

			a(3) = 1*a(0)a(2) + 6*a(1)a(1) + 1*a(2)a(0) = 2+6+2 = 10.
E.g.f.: A(x) = 1 + x^2/2! + 2*x^4/4! + 10*x^6/6! + 80*x^8/8! + ...
G.f. = 1 + x + 2*x^2 + 10*x^3 + 80*x^4 + 1000*x^8 + 17600*x^9 + ...
		

Crossrefs

a(n+1) = sum[C(n, j)a(j)a(n-j)] would give factorials A000142, a(n+1) = sum[C(2n, 2j)a(j)a(n-j)]/a(n) would give Catalan numbers A000108, a(n+1) = sum[C(n, j)a(j)a(n-j)]/a(n) would give central binomials A001405.

Programs

  • Mathematica
    Clear[a]; a[n_]:=a[n]=If[n<2,1,Sum[a[j]*a[n-1-j]*Binomial[2*n-2,2*j],{j,0,n-1}]]; Table[a[n], {n,0,30}] (* Vaclav Kotesovec, Jun 14 2015 *)
    a[ n_] := If[n < 0, 0, Module[{x, y}, Nest[Dt[#] /. {Dt[x] -> y, Dt[y] -> x^2} &, x, 2*n] /. {x -> 1, y -> 0}]]; (* Michael Somos, Apr 18 2022 *)
  • PARI
    /* E.g.f. A(x) = exp( Integral 1/A(x) * Integral A(x)^2 dx dx ) */
    {a(n) = local(A=1+x); for(i=1,n, A = exp( intformal( 1/A * intformal( A^2 + x*O(x^n)) ) ) ); n!*polcoeff(A,n)}
    for(n=0,20,print1(a(2*n),", ")) \\ Paul D. Hanna, Jun 02 2015
    
  • PARI
    /* By definition: */
    {a(n) = if(n==0,1,sum(k=0,n-1, binomial(2*n-2,2*k)*a(k)*a(n-k-1)))}
    for(n=0,20,print1(a(n),", ")) \\ Paul D. Hanna, Jun 02 2015
    
  • PARI
    {a(n) = if(n<0, 0, my(x='x, y = 1 + O(x^2)); for(i=1, n, y = 1 + intformal(intformal(y^2))); polcoeff(y, 2*n)*(2*n)!)}; /* Michael Somos, Apr 18 2022 */

Formula

E.g.f. satisfies: A(x) = exp( Integral 1/A(x) * Integral A(x)^2 dx dx ), where A(x) = Sum_{n>=0} a(n)*x^(1*n)/(2*n)! and the constant of integration is zero. - Paul D. Hanna, Jun 02 2015
From Vaclav Kotesovec, Jun 14 2015: (Start)
a(n) ~ c * d^n * n!^2 * sqrt(n), where d = A258895 = 32*Pi / (Gamma(1/6) * Gamma(1/3))^2 = 2^(17/3) * Pi^2 / (3*Gamma(1/3)^6) = 0.452104299183420528841..., c = 1.53043521765866544548745... = 2^(20/3) * Pi^(3/2) / Gamma(1/3)^6 = 192*sqrt(Pi) / (Gamma(1/3)*Gamma(1/6))^2.
a(n) ~ 3 * 2^(5*n+7) * Pi^(n+3/2) * n^(2*n+3/2) / (exp(2*n) * Gamma(1/6)^(2*n+2) * Gamma(1/3)^(2*n+2)).
a(n) ~ 2^((17*n+23)/3) * Pi^(2*n+5/2) * n^(2*n+3/2) / (3^n * exp(2*n) * Gamma(1/3)^(6*n+6)).
(End)
Define e.g.f. A(x) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)!. Then 3*A'(x)^2 = 2*A(x)^3 - 2. - Michael Somos, Jan 07 2022

Extensions

More terms from Vaclav Kotesovec, Jun 14 2015

A333497 a(0) = a(1) = a(2) = 1; a(n) = Sum_{k=0..n-3} binomial(n-3,k) * a(k) * a(n-k-3).

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 8, 18, 48, 144, 456, 1560, 5808, 23184, 98160, 440832, 2101824, 10588608, 56104128, 312013440, 1818498816, 11082682368, 70467474816, 466680045312, 3214497245184, 22994283345408, 170573216656896, 1310482565462016, 10415453732637696
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 04 2020

Keywords

Comments

Shifts 3 places left when e.g.f. is squared.

Crossrefs

Programs

  • Mathematica
    a[0] = a[1] = a[2] = 1; a[n_] := a[n] = Sum[Binomial[n - 3, k] a[k] a[n - k - 3], {k, 0, n - 3}]; Table[a[n], {n, 0, 28}]
    nmax = 28; A[] = 0; Do[A[x] = 1 + x + x^2/2 + Integrate[Integrate[Integrate[A[x]^2, x], x], x] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] Range[0, nmax]!

Formula

E.g.f. A(x) satisfies: A(x) = 1 + x + x^2/2 + Integral( Integral( Integral A(x)^2 dx) dx) dx.

A336009 a(0) = ... = a(3) = 1; a(n) = Sum_{k=0..n-4} binomial(n-4,k) * a(k) * a(n-k-4).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 4, 8, 16, 34, 82, 226, 678, 2108, 6892, 23948, 88532, 344816, 1401200, 5925000, 26146360, 120743496, 582606552, 2926675112, 15259183112, 82458502624, 461577781968, 2674216518016, 16013654472352, 98968416103968, 630595248710144
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 04 2020

Keywords

Comments

Shifts 4 places left when e.g.f. is squared.

Crossrefs

Programs

  • Mathematica
    a[0] = a[1] = a[2] = a[3] = 1; a[n_] := a[n] = Sum[Binomial[n - 4, k] a[k] a[n - k - 4], {k, 0, n - 4}]; Table[a[n], {n, 0, 30}]
    nmax = 30; A[] = 0; Do[A[x] = 1 + x + x^2/2 + x^3/6 + Integrate[Integrate[Integrate[Integrate[A[x]^2, x], x], x], x] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] Range[0, nmax]!

Formula

E.g.f. A(x) satisfies: A(x) = 1 + x + x^2/2 + x^3/6 + Integral( Integral( Integral( Integral A(x)^2 dx) dx) dx) dx.

A336010 a(0) = ... = a(4) = 1; a(n) = Sum_{k=0..n-5} binomial(n-5,k) * a(k) * a(n-k-5).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 66, 148, 374, 1052, 3156, 9724, 31096, 104124, 366696, 1355624, 5220120, 20763160, 84944720, 357759200, 1557192440, 7029575320, 32929457880, 159764303320, 800509163360, 4132518624560, 21953331512080, 119966645509440
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 04 2020

Keywords

Comments

Shifts 5 places left when e.g.f. is squared.

Crossrefs

Programs

  • Mathematica
    a[0] = a[1] = a[2] = a[3] = a[4] = 1; a[n_] := a[n] = Sum[Binomial[n - 5, k] a[k] a[n - k - 5], {k, 0, n - 5}]; Table[a[n], {n, 0, 32}]
    nmax = 32; A[] = 0; Do[A[x] = 1 + x + x^2/2 + x^3/6 + x^4/24 + Integrate[Integrate[Integrate[Integrate[Integrate[A[x]^2, x], x], x], x], x] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] Range[0, nmax]!

Formula

E.g.f. A(x) satisfies: A(x) = 1 + x + x^2/2 + x^3/6 + x^4/24 + Integral( Integral( Integral( Integral( Integral A(x)^2 dx) dx) dx) dx) dx.

A336023 a(0) = a(1) = a(2) = 1; a(n) = (1/2) * Sum_{k=0..n-2} binomial(n-2,k) * a(k) * a(n-k-2).

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 9, 24, 73, 241, 881, 3526, 15252, 70989, 354454, 1887349, 10674773, 63936181, 404240736, 2690174976, 18798077227, 137612318374, 1053181689299, 8410678868749, 69966341141373, 605313810207096, 5438284743262816, 50668461879077851
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 05 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = a[1] = a[2] = 1; a[n_] := a[n] = (1/2) Sum[Binomial[n - 2, k] a[k] a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 27}]
    nmax = 27; A[] = 0; Do[A[x] = 1 + x + x^2/4 + 1/2 Integrate[Integrate[A[x]^2, x], x] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] Range[0, nmax]!
    Table[SeriesCoefficient[1 + (72 (WeierstrassP[x, {-1/12, 1/432}] - WeierstrassPPrime[x, {-1/12, 1/432}]))/(1 - 12 WeierstrassP[x, {-1/12, 1/432}])^2, {x, 0, k}] k!, {k, 0, 30}] (* Jan Mangaldan, Nov 27 2020 *)
    a[ n_] := Module[{b, b0, b1, b2}, b[0]=b0; b[m_] := b[n] = Expand[Dt[b[m-1]] /. {Dt[b0]->b1, Dt[b1]->b2, Dt[b2]->b0*b1}]; b[n] /. {b0->1, b1->1, b2->1}]; (* Michael Somos, Jan 21 2021 *)
  • PARI
    {a(n) = my(t, b0='b0, b1='b1, b2='b2); t = b0; for(k=1, n, t = deriv(t, b0) * b1 + deriv(t, b1) * b2 + deriv(t, b2) * b0*b1); substvec(t, [b0, b1, b2], [1, 1, 1])}; /* Michael Somos, Jan 21 2021 */

Formula

E.g.f. A(x) satisfies: A(x) = 1 + x + x^2/4 + (1/2) * Integral( Integral A(x)^2 dx) dx.
a(n) ~ n! * c * d^n * n, where d = 0.3327497845052484431663758951399704951054382840130942017786917698589406... is the root of the equation WeierstrassP(1/d, -1/12, 1/432) = 1/12 and c = 1.3286690290594713229820603959597228439699874045711069972066245497... - Vaclav Kotesovec, Jul 05 2020, updated Nov 28 2020
E.g.f.: 12^(1/3) * WeierstrassP((x + c)/12^(1/3), {-12^(1/3), 1/3}), where c = 6.010522299732561104963296256980218197216667207108031458739075310344... is the root of the equation WeierstrassP(c/12^(1/3), {-12^(1/3), 1/3}) = 12^(-1/3). - Vaclav Kotesovec, Jul 05 2020

A337187 a(n) = 1 + Sum_{k=0..n-2} binomial(n-2,k) * a(k) * a(n-k-2).

Original entry on oeis.org

1, 1, 2, 3, 7, 19, 63, 229, 955, 4407, 22445, 124249, 746003, 4821287, 33394193, 246652725, 1935828995, 16086138151, 141100295557, 1302780182449, 12630092274099, 128275445380247, 1362029496267529, 15090795795916493, 174167341456580947, 2090520625244752407
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 29 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = 1 + Sum[Binomial[n - 2, k] a[k] a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 25}]

Formula

E.g.f. A(x) satisfies: A''(x) = exp(x) + A(x)^2.

A351879 a(0) = a(1) = 1; a(n) = -Sum_{k=0..n-2} binomial(n-2,k) * a(k) * a(n-k-2).

Original entry on oeis.org

1, 1, -1, -2, 0, 10, 10, -60, -220, 400, 4200, 2200, -90200, -290400, 1892000, 15796000, -24024000, -775676000, -1592492000, 36509880000, 240055640000, -1435950560000, -23703057840000, 7376731120000, 2082346354000000, 9478853472000000, -162472029808000000
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 23 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = a[1] = 1; a[n_] := a[n] = -Sum[Binomial[n - 2, k] a[k] a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 26}]

Formula

E.g.f. A(x) satisfies: A(x) = 1 + x - Integral( Integral A(x)^2 dx) dx.
Showing 1-8 of 8 results.