A035012
One half of 9-factorial numbers.
Original entry on oeis.org
1, 11, 220, 6380, 242440, 11394680, 638102080, 41476635200, 3069271004800, 254749493398400, 23436953392652800, 2367132292657932800, 260384552192372608000, 30985761710892340352000, 3966177498994219565056000, 543366317362208080412672000, 79331482334882379740250112000
Offset: 1
-
[n le 1 select 1 else (9*n-7)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 18 2022
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 10, 2*5!, 9}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
Table[9^n*Pochhammer[2/9, n]/2, {n, 40}] (* G. C. Greubel, Oct 18 2022 *)
-
[9^n*rising_factorial(2/9,n)/2 for n in range(1,40)] # G. C. Greubel, Oct 18 2022
A063902
a(n+1) = sum{j = 0,...n}[C(2n,2j)a(j)a(n-j)] with a(0) = 1.
Original entry on oeis.org
1, 1, 2, 10, 80, 1000, 17600, 418000, 12848000, 496672000, 23576960000, 1348404640000, 91442700800000, 7255463564800000, 665885747225600000, 69994087116448000000, 8354181454767104000000, 1123646013779238400000000, 169165728883243642880000000
Offset: 0
a(3) = 1*a(0)a(2) + 6*a(1)a(1) + 1*a(2)a(0) = 2+6+2 = 10.
E.g.f.: A(x) = 1 + x^2/2! + 2*x^4/4! + 10*x^6/6! + 80*x^8/8! + ...
G.f. = 1 + x + 2*x^2 + 10*x^3 + 80*x^4 + 1000*x^8 + 17600*x^9 + ...
a(n+1) = sum[C(n, j)a(j)a(n-j)] would give factorials
A000142, a(n+1) = sum[C(2n, 2j)a(j)a(n-j)]/a(n) would give Catalan numbers
A000108, a(n+1) = sum[C(n, j)a(j)a(n-j)]/a(n) would give central binomials
A001405.
-
Clear[a]; a[n_]:=a[n]=If[n<2,1,Sum[a[j]*a[n-1-j]*Binomial[2*n-2,2*j],{j,0,n-1}]]; Table[a[n], {n,0,30}] (* Vaclav Kotesovec, Jun 14 2015 *)
a[ n_] := If[n < 0, 0, Module[{x, y}, Nest[Dt[#] /. {Dt[x] -> y, Dt[y] -> x^2} &, x, 2*n] /. {x -> 1, y -> 0}]]; (* Michael Somos, Apr 18 2022 *)
-
/* E.g.f. A(x) = exp( Integral 1/A(x) * Integral A(x)^2 dx dx ) */
{a(n) = local(A=1+x); for(i=1,n, A = exp( intformal( 1/A * intformal( A^2 + x*O(x^n)) ) ) ); n!*polcoeff(A,n)}
for(n=0,20,print1(a(2*n),", ")) \\ Paul D. Hanna, Jun 02 2015
-
/* By definition: */
{a(n) = if(n==0,1,sum(k=0,n-1, binomial(2*n-2,2*k)*a(k)*a(n-k-1)))}
for(n=0,20,print1(a(n),", ")) \\ Paul D. Hanna, Jun 02 2015
-
{a(n) = if(n<0, 0, my(x='x, y = 1 + O(x^2)); for(i=1, n, y = 1 + intformal(intformal(y^2))); polcoeff(y, 2*n)*(2*n)!)}; /* Michael Somos, Apr 18 2022 */
A333497
a(0) = a(1) = a(2) = 1; a(n) = Sum_{k=0..n-3} binomial(n-3,k) * a(k) * a(n-k-3).
Original entry on oeis.org
1, 1, 1, 1, 2, 4, 8, 18, 48, 144, 456, 1560, 5808, 23184, 98160, 440832, 2101824, 10588608, 56104128, 312013440, 1818498816, 11082682368, 70467474816, 466680045312, 3214497245184, 22994283345408, 170573216656896, 1310482565462016, 10415453732637696
Offset: 0
-
a[0] = a[1] = a[2] = 1; a[n_] := a[n] = Sum[Binomial[n - 3, k] a[k] a[n - k - 3], {k, 0, n - 3}]; Table[a[n], {n, 0, 28}]
nmax = 28; A[] = 0; Do[A[x] = 1 + x + x^2/2 + Integrate[Integrate[Integrate[A[x]^2, x], x], x] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] Range[0, nmax]!
A336009
a(0) = ... = a(3) = 1; a(n) = Sum_{k=0..n-4} binomial(n-4,k) * a(k) * a(n-k-4).
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 4, 8, 16, 34, 82, 226, 678, 2108, 6892, 23948, 88532, 344816, 1401200, 5925000, 26146360, 120743496, 582606552, 2926675112, 15259183112, 82458502624, 461577781968, 2674216518016, 16013654472352, 98968416103968, 630595248710144
Offset: 0
-
a[0] = a[1] = a[2] = a[3] = 1; a[n_] := a[n] = Sum[Binomial[n - 4, k] a[k] a[n - k - 4], {k, 0, n - 4}]; Table[a[n], {n, 0, 30}]
nmax = 30; A[] = 0; Do[A[x] = 1 + x + x^2/2 + x^3/6 + Integrate[Integrate[Integrate[Integrate[A[x]^2, x], x], x], x] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] Range[0, nmax]!
A336010
a(0) = ... = a(4) = 1; a(n) = Sum_{k=0..n-5} binomial(n-5,k) * a(k) * a(n-k-5).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 66, 148, 374, 1052, 3156, 9724, 31096, 104124, 366696, 1355624, 5220120, 20763160, 84944720, 357759200, 1557192440, 7029575320, 32929457880, 159764303320, 800509163360, 4132518624560, 21953331512080, 119966645509440
Offset: 0
-
a[0] = a[1] = a[2] = a[3] = a[4] = 1; a[n_] := a[n] = Sum[Binomial[n - 5, k] a[k] a[n - k - 5], {k, 0, n - 5}]; Table[a[n], {n, 0, 32}]
nmax = 32; A[] = 0; Do[A[x] = 1 + x + x^2/2 + x^3/6 + x^4/24 + Integrate[Integrate[Integrate[Integrate[Integrate[A[x]^2, x], x], x], x], x] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] Range[0, nmax]!
A336023
a(0) = a(1) = a(2) = 1; a(n) = (1/2) * Sum_{k=0..n-2} binomial(n-2,k) * a(k) * a(n-k-2).
Original entry on oeis.org
1, 1, 1, 1, 2, 4, 9, 24, 73, 241, 881, 3526, 15252, 70989, 354454, 1887349, 10674773, 63936181, 404240736, 2690174976, 18798077227, 137612318374, 1053181689299, 8410678868749, 69966341141373, 605313810207096, 5438284743262816, 50668461879077851
Offset: 0
-
a[0] = a[1] = a[2] = 1; a[n_] := a[n] = (1/2) Sum[Binomial[n - 2, k] a[k] a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 27}]
nmax = 27; A[] = 0; Do[A[x] = 1 + x + x^2/4 + 1/2 Integrate[Integrate[A[x]^2, x], x] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] Range[0, nmax]!
Table[SeriesCoefficient[1 + (72 (WeierstrassP[x, {-1/12, 1/432}] - WeierstrassPPrime[x, {-1/12, 1/432}]))/(1 - 12 WeierstrassP[x, {-1/12, 1/432}])^2, {x, 0, k}] k!, {k, 0, 30}] (* Jan Mangaldan, Nov 27 2020 *)
a[ n_] := Module[{b, b0, b1, b2}, b[0]=b0; b[m_] := b[n] = Expand[Dt[b[m-1]] /. {Dt[b0]->b1, Dt[b1]->b2, Dt[b2]->b0*b1}]; b[n] /. {b0->1, b1->1, b2->1}]; (* Michael Somos, Jan 21 2021 *)
-
{a(n) = my(t, b0='b0, b1='b1, b2='b2); t = b0; for(k=1, n, t = deriv(t, b0) * b1 + deriv(t, b1) * b2 + deriv(t, b2) * b0*b1); substvec(t, [b0, b1, b2], [1, 1, 1])}; /* Michael Somos, Jan 21 2021 */
A337187
a(n) = 1 + Sum_{k=0..n-2} binomial(n-2,k) * a(k) * a(n-k-2).
Original entry on oeis.org
1, 1, 2, 3, 7, 19, 63, 229, 955, 4407, 22445, 124249, 746003, 4821287, 33394193, 246652725, 1935828995, 16086138151, 141100295557, 1302780182449, 12630092274099, 128275445380247, 1362029496267529, 15090795795916493, 174167341456580947, 2090520625244752407
Offset: 0
-
a[n_] := a[n] = 1 + Sum[Binomial[n - 2, k] a[k] a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 25}]
A351879
a(0) = a(1) = 1; a(n) = -Sum_{k=0..n-2} binomial(n-2,k) * a(k) * a(n-k-2).
Original entry on oeis.org
1, 1, -1, -2, 0, 10, 10, -60, -220, 400, 4200, 2200, -90200, -290400, 1892000, 15796000, -24024000, -775676000, -1592492000, 36509880000, 240055640000, -1435950560000, -23703057840000, 7376731120000, 2082346354000000, 9478853472000000, -162472029808000000
Offset: 0
-
a[0] = a[1] = 1; a[n_] := a[n] = -Sum[Binomial[n - 2, k] a[k] a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 26}]
Showing 1-8 of 8 results.
Comments