A007606 Take 1, skip 2, take 3, etc.
1, 4, 5, 6, 11, 12, 13, 14, 15, 22, 23, 24, 25, 26, 27, 28, 37, 38, 39, 40, 41, 42, 43, 44, 45, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 137, 138
Offset: 1
Examples
From _Omar E. Pol_, Aug 29 2018: (Start) Written as an irregular triangle in which the row lengths are the odd numbers the sequence begins: 1; 4, 5, 6; 11, 12, 13, 14, 15; 22, 23, 24, 25, 26, 27, 28; 37, 38, 39, 40, 41, 42, 43, 44, 45; 56, 57, 58, 59, 60, 61, 62 , 63, 64, 65, 66; 79, 80, 81, 82 , 83, 84, 85, 86, 87, 88, 89, 90, 91; 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120; ... Row sums give A005917. Column 1 gives A084849. Column 2 gives A096376, n >= 1. Right border gives A000384, n >= 1. (End)
References
- C. Dumitrescu & V. Seleacu, editors, Some Notions and Questions in Number Theory, Vol. I, Erhus Publ., Glendale, 1994.
- R. Honsberger, Mathematical Gems III, M.A.A., 1985, p. 177.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- F. Smarandache, Properties of Numbers, 1972.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- C. Dumitrescu & V. Seleacu, editors, Some Notions and Questions in Number Theory, Vol. I.
- Index entries for sequences generated by sieves
Crossrefs
Programs
-
Haskell
a007606 n = a007606_list !! (n-1) a007606_list = takeSkip 1 [1..] where takeSkip k xs = take k xs ++ takeSkip (k + 2) (drop (2*k + 1) xs) -- Reinhard Zumkeller, Feb 12 2011
-
Mathematica
Flatten[ Table[i, {j, 1, 17, 2}, {i, j(j - 1)/2 + 1, j(j + 1)/2}]] (* Robert G. Wilson v, Mar 11 2004 *) Join[{1},Flatten[With[{nn=20},Range[#[[1]],Total[#]]&/@Take[Thread[ {Accumulate[ Range[nn]]+1,Range[nn]}],{2,-1,2}]]]] (* Harvey P. Dale, Jun 23 2013 *) With[{nn=20},Take[TakeList[Range[(nn(nn+1))/2],Range[nn]],{1,nn,2}]]//Flatten (* Harvey P. Dale, Feb 10 2023 *)
-
PARI
for(n=1,66,m=sqrtint(n-1);print1(n+m*(m+1),","))
Formula
a(n) = n + m*(m+1) where m = floor(sqrt(n-1)). - Klaus Brockhaus, Mar 26 2004
a(n+1) = a(n) + if n=k^2 then 2*k+1 else 1; a(1) = 1. - Reinhard Zumkeller, May 13 2009
Comments