cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007612 a(n+1) = a(n) + digital root (A010888) of a(n).

Original entry on oeis.org

1, 2, 4, 8, 16, 23, 28, 29, 31, 35, 43, 50, 55, 56, 58, 62, 70, 77, 82, 83, 85, 89, 97, 104, 109, 110, 112, 116, 124, 131, 136, 137, 139, 143, 151, 158, 163, 164, 166, 170, 178, 185, 190, 191, 193, 197, 205, 212, 217, 218, 220, 224, 232, 239, 244, 245, 247, 251
Offset: 1

Views

Author

Keywords

Comments

Take m, a natural number. If m == 1 (mod 6), then for every n a(m)*a(n) is in A007612. - Ivan N. Ianakiev, May 08 2013

References

  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 65.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a007612 n = a007612_list !! (n-1)
    a007612_list = iterate a064806 1  -- Reinhard Zumkeller, Apr 13 2013
    
  • Maple
    A007612 := proc(n) option remember: if(n=1)then return 1: fi: return procname(n-1) + ((procname(n-1)-1) mod 9) + 1: end: seq(A007612(n), n=1..100); # Nathaniel Johnston, May 04 2011
  • Mathematica
    dr[n_]:=NestWhile[Total[IntegerDigits[#]]&,n,#>9&]; NestList[#+dr[#]&, 1,60] (* Harvey P. Dale, Sep 24 2011 *)
    NestList[#+Mod[#,9]&,1,60] (* Harvey P. Dale, Sep 14 2016 *)
  • PARI
    first(n)=my(v=vector(n)); v[1]=1; for(k=2,n, v[k]=v[k-1]+v[k-1]%9); v \\ Charles R Greathouse IV, Jun 25 2017
    
  • PARI
    a(n)=n\6*27 + [-4,1,2,4,8,16][n%6+1] \\ Charles R Greathouse IV, Jun 25 2017

Formula

a(1) = 1, a(n+1) = a(n) + a(n) mod 9. - Reinhard Zumkeller, Mar 23 2003
First differences are [1,2,4,8,7,5] repeated. - M. F. Hasler, Sep 15 2009; corrected by John Keith, Aug 17 2022
n == 1, 2, 4, 8, 16, or 23 (mod 27). - Dean Hickerson, Mar 25 2003
Limit_{n->oo} a(n)/n = 9/2; A029898(n) = a(n+1) - a(n) = A010888(a(n)). - Reinhard Zumkeller, Feb 27 2006
a(6n+1)=27n+1, a(6n+2)=27n+2, a(6n+3)=27n+4, a(6n+4)=27n+8, a(6n+5)=27n+16, a(6n+6)=27n+23. - Franklin T. Adams-Watters, Mar 13 2006
G.f.: (1+4*x^4+3*x^3+x^2)/((x+1)*(x^2-x+1)*(x-1)^2). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 10 2009
a(n+1) = A064806(a(n)). - Reinhard Zumkeller, Apr 13 2013