cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007632 Numbers that are palindromic in bases 2 and 10.

Original entry on oeis.org

0, 1, 3, 5, 7, 9, 33, 99, 313, 585, 717, 7447, 9009, 15351, 32223, 39993, 53235, 53835, 73737, 585585, 1758571, 1934391, 1979791, 3129213, 5071705, 5259525, 5841485, 13500531, 719848917, 910373019, 939474939, 1290880921, 7451111547
Offset: 1

Views

Author

Keywords

Comments

Charlton Harrison found a new record binary-decimal palindrome: 11000101111000010101010110100001110100000100000101110000101101010101000011110100011_2 = 7475703079870789703075747_10 on Dec 01 2001. The binary string contains 83 digits! Since then he has added twenty more terms. - Robert G. Wilson v, Jul 03 2006
Intersection of A002113 and A006995. - Reinhard Zumkeller, Jan 22 2012, Feb 07 2010

References

  • M. R. Calandra, Integers which are palindromic in both decimal and binary notation, J. Rec. Math., 18 (No. 1, 1985-1986), 47.
  • S. Pilpel, Some More Double Palindromic Integers, J. Rec. Math., 18 (1985), 174-176.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

For number of terms less than or equal to 10^n, see A120764.

Programs

  • Haskell
    a007632 n = a007632_list !! (n-1)
    a007632_list = filter ((== 1) . a178225) a002113_list
    -- Reinhard Zumkeller, Jan 22 2012
    
  • Magma
    [n: n in [0..2*10^7] | Intseq(n, 10) eq Reverse(Intseq(n, 10))and Intseq(n, 2) eq Reverse(Intseq(n, 2))]; // Vincenzo Librandi, Dec 31 2015
    
  • Maple
    N:= 12: # to get all terms <= 10^N
    ispal2:= proc(n) local L; if n::even then return false fi;
      L:= convert(n,base,2); evalb(L=ListTools:-Reverse(L)) end proc:
    rev10:= proc(n) local L; L:= convert(n,base,10); add(10^i*L[-i-1],i=0..nops(L)-1) end proc:
    pals10:= proc(d) local x,y;
      if d::even then [seq(x*10^(d/2)+rev10(x),x=10^(d/2-1)..10^(d/2)-1)]
      else [seq(seq(x*10^((d+1)/2)+y*10^((d-1)/2)+rev10(x), y=0..9), x=10^((d-1)/2-1)..10^((d-1)/2)-1)]
      fi
    end proc:
    0, 1, 3, 5, 7, 9, seq(op(select(ispal2,pals10(d))),d=2..N); # Robert Israel, Dec 31 2015
  • Mathematica
    NextPalindrome[n_] := Block[{l = Floor[ Log[10, n] + 1], idn = IntegerDigits[n]}, If[ Union[ idn] == {9}, Return[n + 2], If[l < 2, Return[n + 1], If[ FromDigits[ Reverse[ Take[idn, Ceiling[l/2]] ]] > FromDigits[ Take[idn, -Ceiling[l/2]]], FromDigits[ Join[ Take[idn, Ceiling[l/2]], Reverse[ Take[idn, Floor[l/2]]] ]], idfhn = FromDigits[ Take[idn, Ceiling[l/2]]] + 1; idp = FromDigits[ Join[ IntegerDigits[ idfhn], Drop[ Reverse[ IntegerDigits[ idfhn]], Mod[l, 2]] ]] ]] ]]; palQ[n_Integer, base_Integer]:= Block[{idn = IntegerDigits[n, base]}, idn == Reverse[idn]]; l = {0}; a = 0; Do[a = NextPalindrome[a]; If[ palQ[a, 2], AppendTo[l, a]], {n, 1000000}]; l (* Robert G. Wilson v, Sep 30 2004 *)
    b1=2; b2=10; lst={}; Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 2 10^7}]; lst (* Vincenzo Librandi, Dec 31 2015 *)
    Select[Range[0,10^5], PalindromeQ[#] && # == IntegerReverse[#, 2] &] (* Robert Price, Nov 09 2019 *)
  • PARI
    isok(n) = my(d = digits(n), b=binary(n)); (d == Vecrev(d)) && (b == Vecrev(b)); \\ Michel Marcus, Dec 31 2015
  • Python
    from itertools import chain
    A007632_list = sorted([n for n in chain((int(str(x)+str(x)[::-1]) for x in range(1,10**6)),(int(str(x)+str(x)[-2::-1]) for x in range(10**6))) if bin(n)[2:] == bin(n)[:1:-1]]) # Chai Wah Wu, Nov 23 2014
    

Extensions

One more term from George Russell (ger(AT)tzi.de), Nov 20 2000
Two further terms from Harvey P. Dale, Mar 09 2001
Further terms from George Russell (ger(AT)tzi.de), Nov 02 2001