A007659 Primes p such that Ramanujan number tau(p) is divisible by p.
2, 3, 5, 7, 2411, 7758337633
Offset: 1
References
- Morris Newman, A table of tau(p) modulo p, p prime, 3 <= p <= 16067, National Bureau of Standards, 1972.
- Joe Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 275.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Fernando Q. GouvĂȘa, Non-ordinary primes: a story, Experimental Mathematics 6(3) (1997), 195-205; alternative link.
- Nik Lygeros and Olivier Rozier, A new solution for the equation tau(p)=0 (mod p). Journal of Integer Sequences, Vol. 13 (2010), Article 10.7.4.
- Nik Lygeros and Olivier Rozier, A new solution for the equation tau(p)=0 mod p. Number Theory mailing list (NMBRTHRY), 2010.
- Morris Newman, A table of tau(p) modulo p, p prime, 3 <= p <= 16067, Review, Mathematics of Computation, Vol. 27, No. 121 (1973), pp. 215-216.
Programs
-
Mathematica
Select[ Prime[ Range[ 5133]], Mod[ RamanujanTau[ # ], # ] == 0 &] (* Dean Hickerson, Jan 03 2003 *) Select[Prime[Range[400]],Divisible[RamanujanTau[#],#]&] (* The program generates the first 5 terms of the sequence. *) (* Harvey P. Dale, Jun 06 2022 *)
Extensions
a(6) = 7758337633 from N. Lygeros and O. Rozier, Mar 16 2010. - N. J. A. Sloane, Mar 16 2010
Edited by Max Alekseyev, Jul 11 2010
Comments