cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007679 If n mod 4 = 0 then 2^(n-1)+1 elif n mod 4 = 2 then 2^(n-1)-1 else 2^(n-1).

Original entry on oeis.org

1, 1, 4, 9, 16, 31, 64, 129, 256, 511, 1024, 2049, 4096, 8191, 16384, 32769, 65536, 131071, 262144, 524289, 1048576, 2097151, 4194304, 8388609, 16777216, 33554431, 67108864, 134217729, 268435456, 536870911
Offset: 1

Views

Author

Keywords

References

  • M. E. Larsen, Summa Summarum, A. K. Peters, Wellesley, MA, 2007; see p. 37. [From N. J. A. Sloane, Jan 29 2009]
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Magma
    I:=[1, 1, 4]; [n le 3 select I[n] else 2*Self(n-1)-Self(n-2)+2*Self(n-3): n in [1..40]]; // Vincenzo Librandi, May 09 2012
    
  • Maple
    f:=n->2^(n-1)+cos(Pi*n/2);
  • Mathematica
    CoefficientList[Series[(1-x+3*x^2)/((1-2*x)*(1+x^2)),{x,0,30}],x] (* Vincenzo Librandi, May 09 2012 *)
    Table[Which[Mod[n,4]==0,2^(n-1)+1,Mod[n,4]==2,2^(n-1)-1,True,2^(n-1)], {n,30}] (* or *) LinearRecurrence[{2,-1,2},{1,1,4},30] (* Harvey P. Dale, May 01 2018 *)
  • Python
    def A007679(n): return (1<Chai Wah Wu, Apr 22 2025

Formula

a(n) = 2^(n-1) + cos(n*Pi/2).
a(n) = sum(2^k*C(n-k, 2k)*n/(n-k), k=0..floor(n/3)).
a(n) = ((-i)^n+i^n+2^n)/2, where i=sqrt(-1). a(n) = 2*a(n-1)-a(n-2)+2*a(n-3). G.f.: x*(1-x+3*x^2)/((1-2*x)*(1+x^2)). [Colin Barker, May 08 2012]