cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A048573 a(n) = a(n-1) + 2*a(n-2), a(0)=2, a(1)=3.

Original entry on oeis.org

2, 3, 7, 13, 27, 53, 107, 213, 427, 853, 1707, 3413, 6827, 13653, 27307, 54613, 109227, 218453, 436907, 873813, 1747627, 3495253, 6990507, 13981013, 27962027, 55924053, 111848107, 223696213, 447392427, 894784853, 1789569707, 3579139413, 7158278827, 14316557653
Offset: 0

Views

Author

Michael Somos, Jun 17 1999

Keywords

Comments

Number of positive integers requiring exactly n signed bits in the modified non-adjacent form representation. - Ralf Stephan, Aug 02 2003
The n-th entry (n>1) of the sequence is equal to the 1,1-entry of the n-th power of the unnormalized 4 X 4 Haar matrix: [1 1 1 0 / 1 1 -1 0 / 1 1 0 1 / 1 1 0 -1]. - Simone Severini, Oct 27 2004
Pisano period lengths: 1, 1, 6, 2, 2, 6, 6, 2, 18, 2, 10, 6, 12, 6, 6, 2, 8, 18, 18, 2, ... - R. J. Mathar, Aug 10 2012
For n >= 1, a(n) is the number of ways to tile a strip of length n+2 with blue squares and blue and red dominos, with the restriction that the first two tiles must be the same color. - Guanji Chen and Greg Dresden, Jul 15 2024

Examples

			G.f. = 2 + 3*x + 7*x^2 + 13*x^3 + 27*x^4 + 53*x^5 + 107*x^6 + 213*x^7 + 427*x^8 + ...
		

Crossrefs

Programs

  • Magma
    [(5*2^n+(-1)^n)/3: n in [0..35]]; // Vincenzo Librandi, Jul 05 2011
    
  • Mathematica
    LinearRecurrence[{1,2},{2,3},40] (* Harvey P. Dale, Dec 11 2017 *)
  • PARI
    {a(n) = if( n<0, 0, (5*2^n + (-1)^n) / 3)};
    
  • PARI
    {a(n) = if (n<0 ,0, if( n<2, n+2, a(n-1) + 2*a(n-2)))};
    
  • Sage
    [(5*2^n+(-1)^n)/3 for n in range(35)] # G. C. Greubel, Apr 10 2019

Formula

G.f.: (2 + x) / (1 - x - 2*x^2).
a(n) = (5*2^n + (-1)^n) / 3.
a(n) = 2^(n+1) - A001045(n).
a(n) = A084170(n)+1 = abs(A083581(n)-3) = A081254(n+1) - A081254(n) = A084214(n+2)/2.
a(n) = 2*A001045(n+1) + A001045(n) (note that 2 is the limit of A001045(n+1)/A001045(n)). - Paul Barry, Sep 14 2009
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-3, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=-charpoly(A,-1). - Milan Janjic, Jan 27 2010
Equivalently, with different offset, a(n) = b(n+1) with b(0)=1 and b(n) = Sum_{i=0..n-1} (-1)^i (1 + (-1)^i b(i)). - Olivier Gérard, Jul 30 2012
a(n) = A000975(n-2)*10 + 5 + 2*(-1)^(n-2), a(0)=2, a(1)=3. - Yuchun Ji, Mar 18 2019
a(n+1) = Sum_{i=0..n} a(i) + 1 + (1-(-1)^n)/2, a(0)=2. - Yuchun Ji, Apr 10 2019
a(n) = 2^n + J(n+1) = J(n+2) + J(n+1) - J(n), where J is A001045. - Yuchun Ji, Apr 10 2019
a(n) = A001045(n+2) + A078008(n) = A062510(n+1) - A078008(n+1) = (A001045(n+2) + A062510(n+1))/2 = A014551(n) + 2*A001045(n). - Paul Curtz, Jul 14 2021
From Thomas Scheuerle, Jul 14 2021: (Start)
a(n) = A083322(n) + A024493(n).
a(n) = A127978(n) - A102713(n).
a(n) = A130755(n) - A166249(n).
a(n) = A007679(n) + A139763(n).
a(n) = A168642(n) XOR A007283(n).
a(n) = A290604(n) + A083944(n). (End)
From Paul Curtz, Jul 21 2021: (Start)
a(n) = 5*A001045(n) - A280560(n+1) = abs(A140360(n+1)) - A280560(n+1).
a(n) = 2^n + A001045(n+1) = A001045(n+3) - A000079(n).
a(n) = A001045(n+4) - A340627(n). (End)
a(n) = A001045(n+5) - A005010(n).
a(n+1) + a(n) = a(n+2) - a(n) = 5*2^n. - Michael Somos, Feb 22 2023
a(n) = A135318(2*n) + A135318(2*n+1) = A112387(2*n) + A112387(2*n+1). - Paul Curtz, Jun 26 2024
E.g.f.: (cosh(x) + 5*cosh(2*x) - sinh(x) + 5*sinh(2*x))/3. - Stefano Spezia, May 18 2025

Extensions

Formula of Milan Janjic moved here from wrong sequence by Paul D. Hanna, May 29 2010

A007910 Expansion of 1/((1-2*x)*(1+x^2)).

Original entry on oeis.org

1, 2, 3, 6, 13, 26, 51, 102, 205, 410, 819, 1638, 3277, 6554, 13107, 26214, 52429, 104858, 209715, 419430, 838861, 1677722, 3355443, 6710886, 13421773, 26843546, 53687091, 107374182, 214748365, 429496730, 858993459, 1717986918, 3435973837, 6871947674
Offset: 0

Views

Author

Mogens Esrom Larsen (mel(AT)math.ku.dk)

Keywords

Comments

Also describes the location a(n) of the minimal scaling factor when rescaling an FFT of order 2^{n+2} in order to (currently) minimize the arithmetic operation count (Johnson & Frigo, 2007). - Steven G. Johnson (stevenj(AT)math.mit.edu), Dec 27 2006

References

  • M. E. Larsen, Summa Summarum, A. K. Peters, Wellesley, MA, 2007; see p. 38.

Crossrefs

Programs

Formula

a(0) = 1, a(2n+1) = 2*a(2n) and a(2n) = 2*a(2n-1) + (-1)^n. [Corrected by M. F. Hasler, Feb 22 2018]
a(n) = (4*2^n+cos(Pi*n/2)+2*sin(Pi*n/2))/5. - Paul Barry, Dec 17 2003
a(n) = 2a(n-1)-a(n-2)+2a(n-3). Sequence equals half its second differences with first term dropped. a(n) + a(n+2) = 2^(n+2). - Paul Curtz, Dec 17 2007
a(n) = round(2^(n+2)/5). - Mircea Merca, Dec 27 2010
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*2^(n-2*k). - Gerry Martens, Oct 15 2022

Extensions

Entry revised by N. J. A. Sloane, Feb 24 2004
Offset corrected and minor edits by M. F. Hasler, Feb 22 2018

A007909 Expansion of (1-x)/(1-2*x+x^2-2*x^3).

Original entry on oeis.org

1, 1, 1, 3, 7, 13, 25, 51, 103, 205, 409, 819, 1639, 3277, 6553, 13107, 26215, 52429, 104857, 209715, 419431, 838861, 1677721, 3355443, 6710887, 13421773, 26843545, 53687091, 107374183, 214748365, 429496729, 858993459, 1717986919, 3435973837, 6871947673
Offset: 0

Views

Author

Mogens Esrom Larsen (mel(AT)math.ku.dk)

Keywords

Comments

Equals INVERT transform of (1, 0, 2, 2, 2, ...). - Gary W. Adamson, Apr 28 2009
a(n) is the number of compositions (ordered partitions) of n into parts 1 (one kind), and parts >= 3 of three kinds (no parts 2). - Joerg Arndt, Apr 22 2025

References

  • Kenneth Edwards, Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, Part II, Fib. Q., 58:2 (2020), 169-177.
  • M. E. Larsen, Summa Summarum, A. K. Peters, Wellesley, MA, 2007; see p. 38.

Crossrefs

Programs

  • Magma
    I:=[1, 1, 1]; [n le 3 select I[n] else 2*Self(n-1)-Self(n-2)+2*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jun 17 2012
    
  • Maple
    U:=n->(1/5)*(2^(n+1)+3*cos(n*Pi/2)+sin(n*Pi/2)); [seq(U(n),n=0..50)];
  • Mathematica
    CoefficientList[Series[(1-x)/(1-2*x+x^2-2*x^3),{x,0,40}],x] (* Vincenzo Librandi, Jun 17 2012 *)
    LinearRecurrence[{2,-1,2},{1,1,1},40] (* Harvey P. Dale, Jul 26 2016 *)
  • PARI
    a(n)=2^(n+1)\5+(n%4<2) \\ M. F. Hasler, Feb 22 2018
    
  • Python
    def A007909(n): return (2<Chai Wah Wu, Apr 22 2025

Formula

G.f.: (1-x)/(1-2*x+x^2-2*x^3).
a(n) = (1/5)*(2^(n+1)+3*cos(n*Pi/2)+sin(n*Pi/2)).
a(n) = Sum_{k=0..floor((n-1)/3)} binomial(n-k-1, 2*k)*2^k. - Paul Barry, Sep 16 2004
a(n) = (1/5)*(2^(n+1) + (-1)^[(n+1)/2] + 2*(-1)^[n/2]). - Ralf Stephan, Jun 09 2005
a(n) = 2*a(n-1)-a(n-2)+2*a(n-3). Sequence is identical to its half second differences from the second term; a(n)+a(n+2)=2^(n+1). - Paul Curtz, Dec 17 2007
a(n+1) = (2^n)*Sum_{k=1..n} (-1)^floor(k/2)/2^k. - Yalcin Aktar, Jul 20 2008

Extensions

Offset corrected by M. F. Hasler, Feb 22 2018
Showing 1-3 of 3 results.