A007728 5th binary partition function.
1, 1, 2, 2, 4, 3, 5, 4, 8, 6, 9, 7, 12, 8, 12, 9, 17, 12, 18, 14, 23, 15, 22, 16, 28, 19, 27, 20, 32, 20, 29, 21, 38, 26, 38, 29, 47, 30, 44, 32, 55, 37, 52, 38, 60, 37, 53, 38, 66, 44, 63, 47, 74, 46, 66, 47, 79, 52, 72, 52, 81, 49, 70, 50, 88, 59, 85, 64
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- B. Reznick, Some binary partition functions, in "Analytic number theory" (Conf. in honor P. T. Bateman, Allerton Park, IL, 1989), 451-477, Progr. Math., 85, Birkhäuser Boston, Boston, MA, 1990.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<0, 0, add(`if`(n-j*2^i<0, 0, b(n-j*2^i, i-1)), j=0..4))) end: a:= n-> b(n, ilog2(n)): seq(a(n), n=0..70); # Alois P. Heinz, Jun 21 2012
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 0, 0, Sum[If[n-j*2^i < 0, 0, b[n-j*2^i, i-1, k]], {j, 0, k-1}]]]; a[n_] := b[n, Log[2, n] // Floor, 5]; Table[a[n], {n, 0, 70} ] (* Jean-François Alcover, Jan 17 2014, after Alois P. Heinz *)
Formula
G.f.: Product_{k>=0} (1 - x^(5*2^k))/(1 - x^(2^k)). - Ilya Gutkovskiy, Jul 09 2019
Extensions
More terms from Vladeta Jovovic, May 06 2004
Comments