cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A007750 Nonnegative integers n such that n^2*(n+1)*(2*n+1)^2*(7*n+1)/36 is a square.

Original entry on oeis.org

0, 1, 7, 24, 120, 391, 1921, 6240, 30624, 99457, 488071, 1585080, 7778520, 25261831, 123968257, 402604224, 1975713600, 6416405761, 31487449351, 102259887960, 501823476024, 1629741801607, 7997688167041, 25973608937760
Offset: 0

Views

Author

John C. Hallyburton, Jr. (hallyb(AT)vmsdev.enet.dec.com)

Keywords

Comments

n^2*(n+1)*(2*n+1)^2*(7*n+1)/36 = Sum(i=1..n, i^2) * Sum(i=n+1..2*n, i^2) = A000330(n)*(A000330(2*n)-A000330(n)) = A000330(n)*n*(2*n+1)*(7*n+1)/6. - Michael Somos, Jul 27 2002

Crossrefs

Programs

  • GAP
    a:=[0,1,7,24,120];; for n in [6..30] do a[n]:=a[n-1]+16*a[n-2]-16*a[n-3] -a[n-4]+a[n-5]; od; a; # G. C. Greubel, Feb 10 2020
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( x*(1+6*x+x^2)/((1-x)*(1-16*x^2+x^4)) )); // G. C. Greubel, Feb 10 2020
    
  • Maple
    m:=30; S:=series(x*(1+6*x+x^2)/((1-x)*(1-16*x^2+x^4)), x, m+1): seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Feb 10 2020
  • Mathematica
    CoefficientList[Series[x*(1+6*x+x^2)/((1-x)*(1-16*x^2+x^4)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Jan 15 2017 *)
    Table[If[EvenQ[n], (4*ChebyshevU[n/2,8] -11*ChebyshevU[(n-2)/2,8] -4)/7, (11*ChebyshevU[(n-1)/2,8] -4*ChebyshevU[(n-3)/2,8] -4)/7], {n,0,30}] (* G. C. Greubel, Feb 10 2020 *)
  • PARI
    {a(n) = if( n<0, a(-1-n), if( n<2, n>0, 16 * a(n-2) - a(n-4) + 8))} /* Michael Somos, Jul 27 2002 */
    
  • PARI
    {a(n) = local(w); if( n<0, 0, w = 8 + 3*quadgen(28); n = ((n+1)\2) * (-1)^(n%2); imag(w^n) + 4 * (real(w^n) - 1) / 7)} /* Michael Somos, Jul 27 2002 */
    
  • Sage
    def A007750_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(1+6*x+x^2)/((1-x)*(1-16*x^2+x^4)) ).list()
    A007750_list(30) # G. C. Greubel, Feb 10 2020
    

Formula

From Michael Somos, Jul 27 2002: (Start)
G.f.: x * (1 + 6*x + x^2) / ((1 - x) * (1 - 16*x^2 + x^4)).
a(n) = 16 * a(n-2) - a(n-4) + 8. (End)
From G. C. Greubel, Feb 10 2020: (Start)
a(2*n) = (4*ChebyshevU(n,8) - 11*ChebyshevU(n-1,8) - 4)/7 = A007751(n).
a(2*n+1) = (11*ChebyshevU(n,8) - 4*ChebyshevU(n-1,8) - 4)/7 = A007752(n+1). (End)

Extensions

Edited by Michael Somos, Jul 27 2002

A007752 Odd bisection of A007750.

Original entry on oeis.org

1, 24, 391, 6240, 99457, 1585080, 25261831, 402604224, 6416405761, 102259887960, 1629741801607, 25973608937760, 413948001202561, 6597194410303224, 105141162563649031, 1675661406608081280
Offset: 1

Views

Author

John C. Hallyburton, Jr. (hallyb(AT)vmsdev.enet.dec.com)

Keywords

References

  • Mentioned in a problem on p. 334 of Two-Year College Math. Jnl., Vol. 25, 1994.

Crossrefs

Programs

  • GAP
    a:=[1,24,391];; for n in [4..30] do a[n]:=17*a[n-1]-17*a[n-2]+a[n-3]; od; a; # G. C. Greubel, Mar 04 2020
  • Magma
    I:=[1,24,391]; [n le 3 select I[n] else 17*Self(n-1) -17*Self(n-2) +Self(n-3): n in [1..30]]; // G. C. Greubel, Mar 04 2020
    
  • Maple
    seq( simplify( (4*ChebyshevU(n,8) - 53*ChebyshevU(n-1,8) -4)/7), n=1..20); # G. C. Greubel, Mar 04 2020
  • Mathematica
    Table[(4*ChebyshevU[n, 8] -53*ChebyshevU[n-1, 8] -4)/7, {n,20}] (* G. C. Greubel, Mar 04 2020 *)
  • PARI
    a(n)=local(w); w=8+3*quadgen(28); imag(1/w^n)+4*(real(1/w^n)-1)/7
    
  • PARI
    vector(30, n, (4*polchebyshev(n,2,8) -53*polchebyshev(n-1,2,8) -4)/7 ) \\ G. C. Greubel, Mar 04 2020
    
  • Sage
    [(4*chebyshev_U(n,8) -53*chebyshev_U(n-1,8) -4)/7 for n in (1..30)] # G. C. Greubel, Mar 04 2020
    

Formula

G.f.: x*(1+7*x)/((1-x)*(1-16*x+x^2)).
a(n) = 16*a(n-1) - a(n-2) + 8.
a(n) = (4*ChebyshevU(n, 8) -53*ChebyshevU(n-1, 8) -4)/7. - G. C. Greubel, Mar 04 2020
E.g.f.: (exp(8*x)*(4*cosh(3*sqrt(7)*x) - sqrt(7)*sinh(3*sqrt(7)*x)) - 4*exp(x))/7. - Stefano Spezia, Mar 14 2020
a(n) = A097830(n-1)+7*A097830(n-2). - R. J. Mathar, Jul 04 2024

Extensions

Edited by Michael Somos, Jul 27 2002
Showing 1-2 of 2 results.