cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007759 Knopfmacher expansion of sqrt(2): a(2n) = 2*(a(2n-1) + 1)^2 - 1, a(2n+1) = 2*(a(2n)^2 - 1).

Original entry on oeis.org

2, 17, 576, 665857, 886731088896, 1572584048032918633353217, 4946041176255201878775086487573351061418968498176, 48926646634423881954586808839856694558492182258668537145547700898547222910968507268117381704646657
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A002193 (sqrt(2)), A001601.

Programs

  • Magma
    function a(n)
      if n eq 1 then return 2;
      elif n mod 2 eq 0 then return 2*(a(n-1) +1)^2 -1;
      else return 2*(a(n-1)^2 -1);
      end if; return a; end function;
    [a(n): n in [1..9]]; // G. C. Greubel, Mar 04 2020
    
  • Maple
    a:= proc(n) option remember;
    if n=1 then 2
    elif `mod`(n,2) = 0 then 2*(a(n-1) +1)^2 -1
    else 2*(a(n-1)^2 -1)
    end if; end proc;
    seq(a(n), n = 1..9); # G. C. Greubel, Mar 04 2020
  • Mathematica
    a[n_]:= a[n]= If[n==1, 2, If[EvenQ[n], 2*(a[n-1] +1)^2 -1, 2*a[n-1]^2 -2]]; Table[a[n], {n,9}] (* G. C. Greubel, Mar 04 2020 *)
  • PARI
    a(n) = if (n==1, 2, if (n % 2, 2*a(n-1)^2 - 2, 2*(a(n-1)+1)^2 - 1)); \\ Michel Marcus, Feb 20 2019
    
  • Sage
    @CachedFunction
    def a(n):
        if (n==1): return 2
        elif (n%2==0): return 2*(a(n-1) +1)^2 -1
        else: return 2*(a(n-1)^2 -1)
    [a(n) for n in (1..9)] # G. C. Greubel, Mar 04 2020

Extensions

More terms from Christian G. Bower, Jan 06 2006