A007776 Number of connected posets with n elements of height 1.
1, 2, 4, 10, 27, 88, 328, 1460, 7799, 51196, 422521, 4483460, 62330116, 1150504224, 28434624153, 945480850638, 42417674401330, 2572198227615998, 211135833162079184, 23487811567341121158, 3545543330739039981738, 727053904070651775719646
Offset: 2
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 2..50 (terms 2..40 from Alois P. Heinz)
- N. J. A. Sloane, Transforms
- J. Textor, A. Idelberger, and M. Liskiewicz, Learning from Pairwise Marginal Independencies, arXiv:1508.00280 [cs.AI], 2015.
- Index entries for sequences related to posets
Crossrefs
Programs
-
Mathematica
mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0]; EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]]; b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i < 1, {}, Flatten @ Table[Map[ Function[{p}, p + j*x^i], b[n - i*j, i - 1]], {j, 0, n/i}]]]; g[n_, k_] := g[n, k] = Sum[Sum[2^Sum[Sum[GCD[i, j]*Coefficient[s, x, i]* Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}]/ Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n + k, n + k]}], {s, b[n, n]}]; A[n_, k_] := g[Min[n, k], Abs[n - k]]; b[d_] := Sum[A[n, d - n], {n, 0, d}]; EULERi[Array[b, 30]] // Rest (* Jean-François Alcover, Sep 16 2019, after Alois P. Heinz in A049312 *)
Formula
Inverse Euler transform of A055192. - Andrew Howroyd, Oct 03 2018
Extensions
More terms from Vladeta Jovovic, Jul 25 2003
Offset corrected by Andrew Howroyd, Oct 03 2018
Comments