cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007788 Number of augmented Andre 3-signed permutations: E.g.f. (1-sin(3*x))^(-1/3).

Original entry on oeis.org

1, 1, 4, 19, 136, 1201, 13024, 165619, 2425216, 40132801, 740882944, 15091932019, 336257744896, 8134269015601, 212309523595264, 5946914908771219, 177934946000306176, 5663754614516217601, 191097349696090537984, 6812679868133940475219, 255885704427935576621056
Offset: 0

Views

Author

R. Ehrenborg (ehrenbor(AT)lacim.uqam.ca) and M. A. Readdy (readdy(AT)lacim.uqam.ca)

Keywords

Comments

It appears that all members are of the form 3k+1. - Ralf Stephan, Nov 12 2007

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 20); Coefficients(R!(Laplace( (1-Sin(3*x))^(-1/3) ))); // G. C. Greubel, Mar 05 2020
    
  • Maple
    m:=20; S:=series( (1-sin(3*x))^(-1/3), x, m+1): seq(j!*coeff(S, x, j), j=0..m); # G. C. Greubel, Mar 05 2020
  • Mathematica
    With[{nn=20},CoefficientList[Series[(1-Sin[3x])^(-1/3),{x,0,nn}], x] Range[0,nn]!] (* Harvey P. Dale, Nov 23 2011 *)
  • PARI
    Vec(serlaplace( (1-sin(3*x))^(-1/3) +O('x^20) )) \\ G. C. Greubel, Mar 05 2020
    
  • PARI
    a136630(n, k) = 1/(2^k*k!)*sum(j=0, k, (-1)^(k-j)*(2*j-k)^n*binomial(k, j));
    a007559(n) = prod(k=0, n-1, 3*k+1);
    a(n) = sum(k=0, n, a007559(k)*(3*I)^(n-k)*a136630(n, k)); \\ Seiichi Manyama, Jun 24 2025
    
  • Sage
    m=20;
    def A007788_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( (1-sin(3*x))^(-1/3) ).list()
    a=A007788_list(m+1); [factorial(n)*a[n] for n in (0..m)] # G. C. Greubel, Mar 05 2020

Formula

E.g.f.: (1-sin(3*x))^(-1/3).
a(n) ~ n! * 2*6^n/(Pi^(n+2/3)*n^(1/3)*Gamma(2/3)). - Vaclav Kotesovec, Jun 25 2013
a(n) = Sum_{k=0..n} A007559(k) * (3*i)^(n-k) * A136630(n,k), where i is the imaginary unit. - Seiichi Manyama, Jun 24 2025