A007845 Least positive integer k for which 5^n divides k!.
1, 5, 10, 15, 20, 25, 25, 30, 35, 40, 45, 50, 50, 55, 60, 65, 70, 75, 75, 80, 85, 90, 95, 100, 100, 105, 110, 115, 120, 125, 125, 125, 130, 135, 140, 145, 150, 150, 155, 160, 165, 170, 175, 175, 180, 185, 190, 195, 200, 200, 205, 210, 215, 220, 225, 225, 230, 235, 240, 245
Offset: 0
Keywords
References
- H. Ibstedt, Smarandache Primitive Numbers, Smarandache Notions Journal, Vol. 8, No. 1-2-3, 1997, 216-229.
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
Programs
-
Maple
1, seq(t $ padic:-ordp(t,5), t=5..1000, 5); # Robert Israel, Jul 12 2016
-
Mathematica
lpi[n_]:=Module[{k=1,n5=5^n},While[!Divisible[k!,n5],k++];k]; Array[ lpi,60,0] (* Harvey P. Dale, Jun 19 2012 *)
-
PARI
a(n) = {k = 1; while (valuation(k!, 5) < n, k++); k;} \\ Michel Marcus, Aug 19 2013
-
PARI
a(n) = {my(ck = 4 * n, k = 5 * floor(ck/5), t = 0); if(ck > 0, t = sum(i = 1, logint(ck,5),ck\=5)); while(t < n, k+=5; t+=valuation(k,5));max(1,k)} \\ David A. Corneth, Jul 12 2016
Comments