A007857 Number of independent sets in rooted plane trees on n nodes.
1, 2, 8, 37, 184, 959, 5172, 28641, 162008, 932503, 5445934, 32197334, 192357788, 1159603592, 7045356104, 43098733353, 265240985112, 1641100253735, 10202295895890, 63696629668980, 399216722146770, 2510833297584165
Offset: 1
Keywords
Links
- M. Klazar, Twelve countings with rooted plane trees, European Journal of Combinatorics, 18(2) (1997), 195-210.
- M. Klazar, Addendum Twelve Countings with Rooted Plane Trees, European Journal of Combinatorics, 18(6) (1997), 739-740.
- Index entries for sequences related to rooted trees
Programs
Formula
a(n+1) = (2/(n+1))*C(3*n, n) - (1/(n+1))*C(2*n, n) = A007226(n) - A000108(n). - Paul Barry, Nov 05 2006
G.f.: A(x) = x/(1 - x*C(x)*F(x) - x*F(x)^2), where C(x) is g.f. of the Catalan numbers (A000108) (i.e., C(x) = 1 + x*C(x)^2) and F(x) is the g.f. of ternary numbers (A001764) (i.e., F(x) = 1 + x*F(x)^3). - Paul D. Hanna, Jun 06 2007
Conjecture: 2*n*(n - 1)*(2*n - 3)*(44*n - 69)*a(n) + (n - 1)*(176*n^3 - 9591*n^2 + 38703*n - 40640)*a(n-1) + (-17479*n^4 + 218005*n^3 - 959616*n^2 + 1797890*n - 1221920)*a(n-2) + 6*(3*n - 10)*(2*n - 7)*(3*n - 11)*(517*n - 1198)*a(n-3) = 0 for n >= 4. - R. J. Mathar, Nov 26 2012
Extensions
More terms from Paul Barry, Nov 05 2006
Comments