cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007892 A Kutz sequence.

Original entry on oeis.org

1, 4, 9, 1, 4, 9, 16, 4, 9, 16, 25, 9, 16, 25, 36, 16, 25, 36, 49, 25, 36, 49, 64, 36, 49, 64, 81, 49, 64, 81, 100, 64, 81, 100, 121, 81, 100, 121, 144, 100, 121, 144, 169, 121, 144, 169, 196, 144, 169, 196, 225, 169, 196, 225, 256, 196, 225, 256, 289, 225
Offset: 1

Views

Author

Keywords

Comments

The pattern is obvious: after the initial three terms, we have four successive squares.
Another description of the same sequence: array read by rows, with four columns, in which row n lists n^2, (n+1)^2, (n+2)^2, n^2. - Omar E. Pol, Sep 28 2011

Programs

  • Magma
    [(n-3*Floor(n/4))^2: n in [1..60]]; // Vincenzo Librandi, Sep 28 2011
    
  • Mathematica
    Table[(n - 3*Floor[n/4])^2, {n, 60}] (* Arkadiusz Wesolowski, Sep 29 2011 *)
    Rest[Flatten[Table[Range[n,n+3]^2,{n,0,20}]]] (* Harvey P. Dale, Oct 24 2015 *)
  • Maxima
    makelist(((2*n-6*(-1)^((n-1)*n/2)-3*(-1)^n+9)/8)^2,n,1,60); /* Bruno Berselli, Sep 28 2011 */
  • PARI
    a(n)=(floor((-1)^n+(n+5)/2)-3*floor((n+6)/4))^2 \\ Charles R Greathouse IV, Sep 28 2011
    

Formula

a(n) = (floor((-1)^n+(n+5)/2)-3*floor((n+6)/4))^2. [Arkadiusz Wesolowski, Sep 27 2011]
a(n) = (n-3*floor(n/4))^2. [Arkadiusz Wesolowski, Sep 28 2011]
G.f.: x*(1+3*x+5*x^2-8*x^3+x^4-x^5-3*x^6+4*x^7)/((1-x)^3*(1+x+x^2+x^3)^2). a(n) = (A110657(n-1)+1)^2 = ((2*n-6*(-1)^((n-1)*n/2)-3*(-1)^n+9)/8)^2. [Bruno Berselli, Sep 28 2011]