A007892 A Kutz sequence.
1, 4, 9, 1, 4, 9, 16, 4, 9, 16, 25, 9, 16, 25, 36, 16, 25, 36, 49, 25, 36, 49, 64, 36, 49, 64, 81, 49, 64, 81, 100, 64, 81, 100, 121, 81, 100, 121, 144, 100, 121, 144, 169, 121, 144, 169, 196, 144, 169, 196, 225, 169, 196, 225, 256, 196, 225, 256, 289, 225
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- R. E. Kutz, Two unusual sequences, Two-Year College Mathematics Journal, 12 (1981), 316-319.
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,2,-2,0,0,-1,1).
Programs
-
Magma
[(n-3*Floor(n/4))^2: n in [1..60]]; // Vincenzo Librandi, Sep 28 2011
-
Mathematica
Table[(n - 3*Floor[n/4])^2, {n, 60}] (* Arkadiusz Wesolowski, Sep 29 2011 *) Rest[Flatten[Table[Range[n,n+3]^2,{n,0,20}]]] (* Harvey P. Dale, Oct 24 2015 *)
-
Maxima
makelist(((2*n-6*(-1)^((n-1)*n/2)-3*(-1)^n+9)/8)^2,n,1,60); /* Bruno Berselli, Sep 28 2011 */
-
PARI
a(n)=(floor((-1)^n+(n+5)/2)-3*floor((n+6)/4))^2 \\ Charles R Greathouse IV, Sep 28 2011
Formula
a(n) = (floor((-1)^n+(n+5)/2)-3*floor((n+6)/4))^2. [Arkadiusz Wesolowski, Sep 27 2011]
a(n) = (n-3*floor(n/4))^2. [Arkadiusz Wesolowski, Sep 28 2011]
G.f.: x*(1+3*x+5*x^2-8*x^3+x^4-x^5-3*x^6+4*x^7)/((1-x)^3*(1+x+x^2+x^3)^2). a(n) = (A110657(n-1)+1)^2 = ((2*n-6*(-1)^((n-1)*n/2)-3*(-1)^n+9)/8)^2. [Bruno Berselli, Sep 28 2011]
Comments