cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A089182 Prime digit palindromes 2,...,23577532 continued by adding 10^(n-k) and 10^(k-1) times prime(k).

Original entry on oeis.org

2, 22, 232, 2332, 23532, 235532, 2357532, 23577532, 235817532, 2358217532, 23582417532, 235824417532, 2358248417532, 23582488417532, 235824908417532, 2358249108417532, 23582491508417532, 235824915508417532
Offset: 1

Views

Author

Roger L. Bagula, Dec 07 2003

Keywords

Comments

Original definition: Overlapping prime-based palindromic sequence.
Only the first 8 terms are truly palindromes: a modulo 10 version of this would work with a limited digit set {1,2,3,5,7,9} with 2 and 5 only occurring as 1st and 3rd digit to either side.

Crossrefs

Programs

  • Mathematica
    a[m_]=Delete[Table[If [ Floor[m/2]-n>=0, Prime[ n], Prime[m-n]], {n, 1, m}], m] b=Table[Sum[a[m][[i]]*10^(i-1), {i, 1, m-1}], {m, 2, digits}]

Formula

a(n) = Sum_{k=1..floor(n/2)} prime(k)*(10^(n-k) + 10^(k-1)) + (n mod 2)*prime((n+1)/2)*10^floor(n/2). - M. F. Hasler, Apr 06 2009

Extensions

Edited by M. F. Hasler, Apr 06 2009

A089174 A nonsense sequence (not well-defined).

Original entry on oeis.org

2, 3, 7, 11, 13, 17, 19, 23, 37, 41, 59, 73, 101, 137, 157, 239, 257, 271, 547, 2153, 2251, 4649, 7309, 9091, 19697, 21683, 94331, 333667, 928163, 3324301, 4403881, 7532639, 8983031, 10901027, 1111211111, 11195538763, 139381546141, 1102732004467
Offset: 1

Views

Author

Roger L. Bagula, Dec 07 2003

Keywords

Comments

Previous name was: Unique prime factors in A007907 extended to modulo 10 (past 20 elements).
This sequence is finite based on the data given. Since the Mathematica code is the main source of information for this sequence the data and code match for the given digits = 30 component. Increasing digits to, say, 50, increases the number of terms for be factored in A007907 and increases the number of terms to be ordered. This gives more values of this sequence. Since the data is established this removes any more terms from being added, which makes it a finite sequence. - G. C. Greubel, Aug 17 2023

Examples

			A007907 = {1, 11, 121, 1221, 12321, 123321, ...} which factor as {(1^1), (11^1), (11^2), (3^1, 11^1, 37^1), (3^2, 37^2), (3^1, 11^1, 37^1, 101^1), ...}. The list of the factors and their powers, flattened, begins as {1, 1, 11, 1, 11, 2, 3, 1, 11, 1, 37, 1, 3, 2, 37, 2, ...}. The list of ordered prime values begins as {2, 3, 7, 11, ...}.
		

Crossrefs

Cf. A007907.

Programs

  • Mathematica
    digits=30;
    f[m_]= Table[If[Floor[m/2]>=n, Mod[n, 10], Mod[m-n, 10]], {n,m}];
    A007907= Table[Sum[f[m][[i]]*10^(i-1), {i,m}], {m, digits}];
    c= Flatten[Table[FactorInteger[A007907[[n]]], {n, digits-1}]];
    Rest@Union[Table[If[PrimeQ[c[[n]]], c[[n]], 1], {n, Dimensions[c][[1]]}]]

Extensions

Edited by G. C. Greubel, Aug 17 2023

A089183 Palindromes in which, in the first half of the number, digits appear in the order 1, 0, 2, 3, 1, 0, 2, 3, 1, ...

Original entry on oeis.org

1, 11, 101, 1001, 10201, 102201, 1023201, 10233201, 102313201, 1023113201, 10231013201, 102310013201, 1023102013201, 10231022013201, 102310232013201, 1023102332013201, 10231023132013201, 102310231132013201
Offset: 1

Views

Author

Roger L. Bagula, Dec 07 2003

Keywords

Comments

A method of altering the order in the digit sets of palindromic numbers and making continued fractions from them.

Crossrefs

Cf. A007907.

Programs

  • Mathematica
    digits=50 c={1, 0, 2, 3} a[m_]=Delete[Table[If [ Floor[m/2]-n>=0, c[[ Mod[n, 4]]], c[[Mod[m-n, 4]]]], {n, 1, m}], m] b=Table[Sum[a[m][[i]]*10^(i-1), {i, 1, m-1}], {m, 2, digits}]

Formula

c[1]=1 c[2]=0 c[3]=2 c[0]=3 a[m] = Delete[Table[If [ Floor[m/2]-n>=0, c[ Mod[n, 4]], c[Mod[m-n, 4]]], {n, 1, m}], m] b[m]=Sum[a[m][[i]]*10^(i-1), {i, 1, m-1}]

Extensions

Edited by N. J. A. Sloane, Jan 05 2009.

A089184 A coding semi-palindromic sequence made by converting a zero containing limited digit set palindromic sequence to a fraction and then converting back to an continued fraction array and making the sequence up from the result.

Original entry on oeis.org

1, 22, 111, 4444, 33333, 333333, 3333333, 13333133, 133331133, 3323333233, 31133331133, 333343333433, 3333333333333, 33333333333333, 333333333333333, 3313333333313333, 31133333333113333, 333323333333323333
Offset: 2

Views

Author

Roger L. Bagula, Dec 07 2003

Keywords

Crossrefs

Cf. A007907.

Programs

  • Mathematica
    Clear [a, b, c, d, e, f, g, m] (* these continued fraction functions are given in the Mathematica documentation*) CF[r0_?NumericQ, n_Integer?NonNegative] := Module[{l = {}, r = r0, a}, Do[ a = Floor[r]; (* integer part *) AppendTo[l, a]; r = r - a; (* fractional part; 0 <= r < 1 *) If[ r == 0, Break[] ]; r = 1/r; (* r > 1 *), {n}]; l ] CFValue[l_List] := Fold[ 1/#1 + #2&, Infinity, Reverse[l] ] digits=50 c[1]=1 c[2]=0 c[3]=2 c[0]=3 (* general Palindromic continued fraction generator for length m-1*) a[m_]=Delete[Table[If [ Floor[m/2]-n>=0, c[ Mod[n, 4]], c[Mod[m-n, 4]]], {n, 1, m}], m] (* make the fraction from the palindromic array*) e=Table[CFValue[Flatten[Table[a[m], {k, 1, digits}]]], {m, 2, digits}]; (* get the new semi- Palindromic continued fraction array with zeros eliminated*) f[n_]=CF[e[[n]], digits]; (* create new semi-palindromic sequence from the continued fraction array*) g=Table[Sum[f[m][[i]]*10^(i-1), {i, 1, m-1}], {m, 2, digits-1}]

Formula

a(n) = CodeContinuedfraction[Palindromic number[n]]

A287295 a(2n-1) is concatenation of sequence (1,3,..,2n-3,2n-1,2n-3,..3,1) and a(2n) is concatenation of sequence (1,3,..,2n-3,2n-1,2n-1,2n-3,..3,1).

Original entry on oeis.org

1, 11, 131, 1331, 13531, 135531, 1357531, 13577531, 135797531, 1357997531, 135791197531, 13579111197531, 1357911131197531, 135791113131197531, 13579111315131197531, 1357911131515131197531, 135791113151715131197531, 13579111315171715131197531
Offset: 1

Views

Author

XU Pingya, May 22 2017

Keywords

Comments

For n = {2, 3, 13, 16, 19, 21, 67}, a(n) is prime (when n <= 2800).

Crossrefs

Cf. A007907.

Programs

  • Mathematica
    Block[{nn = 18, s}, s = IntegerDigits@ Range[1, nn, 2]; Table[FromDigits@ Flatten@ Join[#, Reverse[If[EvenQ@ n, #, Most@ #] &@ #]] &@ Take[s, Ceiling[n/2]], {n, nn}]] (* Michael De Vlieger, May 23 2017 *)
Showing 1-5 of 5 results.