cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007909 Expansion of (1-x)/(1-2*x+x^2-2*x^3).

Original entry on oeis.org

1, 1, 1, 3, 7, 13, 25, 51, 103, 205, 409, 819, 1639, 3277, 6553, 13107, 26215, 52429, 104857, 209715, 419431, 838861, 1677721, 3355443, 6710887, 13421773, 26843545, 53687091, 107374183, 214748365, 429496729, 858993459, 1717986919, 3435973837, 6871947673
Offset: 0

Views

Author

Mogens Esrom Larsen (mel(AT)math.ku.dk)

Keywords

Comments

Equals INVERT transform of (1, 0, 2, 2, 2, ...). - Gary W. Adamson, Apr 28 2009
a(n) is the number of compositions (ordered partitions) of n into parts 1 (one kind), and parts >= 3 of three kinds (no parts 2). - Joerg Arndt, Apr 22 2025

References

  • Kenneth Edwards, Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, Part II, Fib. Q., 58:2 (2020), 169-177.
  • M. E. Larsen, Summa Summarum, A. K. Peters, Wellesley, MA, 2007; see p. 38.

Crossrefs

Programs

  • Magma
    I:=[1, 1, 1]; [n le 3 select I[n] else 2*Self(n-1)-Self(n-2)+2*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jun 17 2012
    
  • Maple
    U:=n->(1/5)*(2^(n+1)+3*cos(n*Pi/2)+sin(n*Pi/2)); [seq(U(n),n=0..50)];
  • Mathematica
    CoefficientList[Series[(1-x)/(1-2*x+x^2-2*x^3),{x,0,40}],x] (* Vincenzo Librandi, Jun 17 2012 *)
    LinearRecurrence[{2,-1,2},{1,1,1},40] (* Harvey P. Dale, Jul 26 2016 *)
  • PARI
    a(n)=2^(n+1)\5+(n%4<2) \\ M. F. Hasler, Feb 22 2018
    
  • Python
    def A007909(n): return (2<Chai Wah Wu, Apr 22 2025

Formula

G.f.: (1-x)/(1-2*x+x^2-2*x^3).
a(n) = (1/5)*(2^(n+1)+3*cos(n*Pi/2)+sin(n*Pi/2)).
a(n) = Sum_{k=0..floor((n-1)/3)} binomial(n-k-1, 2*k)*2^k. - Paul Barry, Sep 16 2004
a(n) = (1/5)*(2^(n+1) + (-1)^[(n+1)/2] + 2*(-1)^[n/2]). - Ralf Stephan, Jun 09 2005
a(n) = 2*a(n-1)-a(n-2)+2*a(n-3). Sequence is identical to its half second differences from the second term; a(n)+a(n+2)=2^(n+1). - Paul Curtz, Dec 17 2007
a(n+1) = (2^n)*Sum_{k=1..n} (-1)^floor(k/2)/2^k. - Yalcin Aktar, Jul 20 2008

Extensions

Offset corrected by M. F. Hasler, Feb 22 2018