A008291 Triangle of rencontres numbers.
1, 2, 3, 9, 8, 6, 44, 45, 20, 10, 265, 264, 135, 40, 15, 1854, 1855, 924, 315, 70, 21, 14833, 14832, 7420, 2464, 630, 112, 28, 133496, 133497, 66744, 22260, 5544, 1134, 168, 36, 1334961, 1334960, 667485, 222480, 55650, 11088, 1890, 240, 45, 14684570
Offset: 2
Examples
Triangle begins: 1 2 3 9 8 6 44 45 20 10 265 264 135 40 15 1854 1855 924 315 70 21 14833 14832 7420 2464 630 112 28 133496 133497 66744 22260 5544 1134 168 36 ...
References
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 194.
- Kaufmann, Arnold. "Introduction a la combinatorique en vue des applications." Dunod, Paris, 1968. See p. 92.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 65.
Links
- T. D. Noe, Rows n=2..50, flattened
- FindStat - Combinatorial Statistic Finder, The number of fixed points of a permutation
- I. Kaplansky, Symbolic solution of certain problems in permutations, Bull. Amer. Math. Soc., 50 (1944), 906-914.
Crossrefs
Programs
-
Maple
T:= proc(n, k) T(n, k):= `if`(k=0, `if`(n<2, 1-n, (n-1)* (T(n-1, 0)+T(n-2, 0))), binomial(n, k)*T(n-k, 0)) end: seq(seq(T(n, k), k=0..n-2), n=2..12); # Alois P. Heinz, Mar 17 2013
-
Mathematica
Prepend[Flatten[f[list_]:=Select[list,#>1&];Map[f,Drop[Transpose[Table[d = Exp[-x]/(1 - x);Range[0, 10]! CoefficientList[Series[d x^k/k!, {x, 0, 10}],x], {k, 0, 8}]], 3]]], 1] (* Geoffrey Critzer, Nov 28 2011 *)
-
PARI
T(n, k)= if(k<0 || k>n, 0, n!/k!*sum(i=0, n-k, (-1)^i/i!))
Formula
E.g.f. for column k: (x^k/k!)(exp(-x)/(1-x)). - Geoffrey Critzer, Nov 28 2011
Row generating polynomials appear to be given by -1 + sum {k = 0..n} (-1)^(n+k)*C(n,k)*(1+k*x)^(n-k)*(2+(k-1)*x)^k. - Peter Bala, Dec 29 2011
Extensions
Comments and more terms from Michael Somos, Apr 26 2000
Comments