A008366 Smallest prime factor is >= 17.
1, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Peter Bala, A property of p-rough numbers.
- Benedict Irwin, Generating Function.
- Eric Weisstein's World of Mathematics, Rough Number.
- Index entries for sequences related to smooth numbers
Crossrefs
Programs
-
Maple
for i from 1 to 500 do if gcd(i,30030) = 1 then print(i); fi; od;
-
Mathematica
Select[ Range[ 300 ], GCD[ #1, 30030 ]==1& ] Join[{1},Select[Range[300],FactorInteger[#][[1,1]]>=17&]] (* Harvey P. Dale, Mar 28 2020 *)
-
PARI
isA008366(n) = gcd(n,30030)==1 \\ Michael B. Porter, Oct 10 2009
Formula
Numbers n > 1 such that ((Sum_{k=1..n} k^10) mod n = 0) and ((Sum_{k=1..n} k^12) mod n = 0) (conjecture). - Gary Detlefs, Dec 27 2011
a(n) = a(n-1) + a(n-5760) - a(n-5761). - Vaclav Kotesovec, Mar 18 2016
G.f: x*P(x)/(1 - x - x^5760 + x^5761) where P(x) is a polynomial of degree 5760. - Benedict W. J. Irwin, Mar 23 2016
a(n) = (1001/192)*n + O(1), where the O(1) term is bounded by +/- 19. - Charles R Greathouse IV, Oct 13 2022
Comments