A008419 Crystal ball sequence for 9-dimensional cubic lattice.
1, 19, 181, 1159, 5641, 22363, 75517, 224143, 598417, 1462563, 3317445, 7059735, 14218905, 27298155, 50250765, 89129247, 152951073, 254831667, 413442773, 654862247, 1014889769, 1541911931, 2300409629, 3375210671, 4876601009, 6946419011, 9765268709
Offset: 0
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
- Index entries for crystal ball sequences
Programs
-
Mathematica
CoefficientList[Series[(z + 1)^9/(z - 1)^10, {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 19 2011 *) LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{1,19,181,1159,5641,22363,75517,224143,598417,1462563},40] (* Harvey P. Dale, Jul 25 2013 *)
Formula
G.f.: (1+x)^9/(1-x)^10.
a(n) = (4*n^9+18*n^8+240*n^7+756*n^6+3612*n^5+7182*n^4+14360*n^3+14724*n^2+ 10134*n+2835)/2835. - Johannes W. Meijer, Jul 14 2013
a(0)=1, a(1)=19, a(2)=181, a(3)=1159, a(4)=5641, a(5)=22363, a(6)=75517, a(7)=224143, a(8)=598417, a(9)=1462563, a(n)=10*a(n-1)-45*a(n-2)+ 120*a(n-3)- 210*a(n-4)+252*a(n-5)-210*a(n-6)+120*a(n-7)-45*a(n-8)+ 10*a(n-9)- a(n-10). - Harvey P. Dale, Jul 25 2013
Sum_{n >= 1} (-1)^(n+1)/(n*a(n-1)*a(n)) = (1 - 1/2 + 1/3 - ... + 1/9) - log(2). - Peter Bala, Mar 23 2024
Comments