cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008454 Tenth powers: a(n) = n^10.

Original entry on oeis.org

0, 1, 1024, 59049, 1048576, 9765625, 60466176, 282475249, 1073741824, 3486784401, 10000000000, 25937424601, 61917364224, 137858491849, 289254654976, 576650390625, 1099511627776, 2015993900449, 3570467226624, 6131066257801, 10240000000000, 16679880978201, 26559922791424
Offset: 0

Views

Author

Keywords

Comments

Fifth powers of the squares and the squares of fifth powers. - Wesley Ivan Hurt, Apr 01 2016

Crossrefs

a(n) = A123867(n) + 1.
Cf. A000290 (n^2), A000584 (n^5), A013668.
Cf. A004802 - A004812 (sums of 2, ..., 12 nonzero tenth powers).

Programs

Formula

Multiplicative with a(p^e) = p^(10e). - David W. Wilson, Aug 01 2001
Totally multiplicative sequence with a(p) = p^10 for primes p. - Jaroslav Krizek, Nov 01 2009
From Robert Israel, Mar 31 2016: (Start)
G.f.: x*(x + 1)*(x^8 + 1012*x^7 + 46828*x^6 + 408364*x^5 + 901990*x^4 + 408364*x^3 + 46828*x^2 + 1012*x + 1)/(1 - x)^11.
E.g.f.: x*exp(x)*(x^9 + 45*x^8 + 750*x^7 + 5880*x^6 + 22827*x^5 + 42525*x^4 + 34105*x^3 + 9330*x^2 + 511*x + 1). (End)
From Amiram Eldar, Oct 08 2020: (Start)
Sum_{n>=1} 1/a(n) = zeta(10) = Pi^10/93555 (A013668).
Sum_{n>=1} (-1)^(n+1)/a(n) = 511*zeta(10)/512 = 73*Pi^10/6842880. (End)