A008455 11th powers: a(n) = n^11.
0, 1, 2048, 177147, 4194304, 48828125, 362797056, 1977326743, 8589934592, 31381059609, 100000000000, 285311670611, 743008370688, 1792160394037, 4049565169664, 8649755859375, 17592186044416, 34271896307633, 64268410079232, 116490258898219, 204800000000000
Offset: 0
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
Crossrefs
Programs
-
Magma
[n^11: n in [0..40]]; // Vincenzo Librandi, Jul 05 2014
-
Mathematica
Table[n^11, {n, 0, 30}] (* Vincenzo Librandi, Jul 05 2014 *)
-
Maxima
A008455(n):=n^11$ makelist(A008455(n),n,0,20); /* Martin Ettl, Dec 17 2012 */
-
PARI
A008455(n)=n^11 \\ M. F. Hasler, Jul 03 2025
-
Python
A008455 = lambda n: n**11 # M. F. Hasler, Jul 03 2025
Formula
Multiplicative with a(p^e) = p^(11*e). - David W. Wilson, Aug 01 2001
Totally multiplicative with a(p) = p^11 for primes p. - Jaroslav Krizek, Nov 01 2009
From Amiram Eldar, Oct 08 2020: (Start)
Sum_{n>=1} 1/a(n) = zeta(11) (A013669).
Sum_{n>=1} (-1)^(n+1)/a(n) = 1023*zeta(11)/1024. (End)