cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 43 results. Next

A155015 Integer part of square root of n^11 = A008455(n).

Original entry on oeis.org

0, 1, 45, 420, 2048, 6987, 19047, 44467, 92681, 177147, 316227, 534145, 861979, 1338715, 2012353, 2941046, 4194304, 5854220, 8016758, 10793065, 14310835, 18715701, 24172676, 30867616, 39008731, 48828125, 60583368, 74559107
Offset: 0

Views

Author

Keywords

Programs

  • Magma
    [Floor(Sqrt(n^11)): n in [1..30]]; // G. C. Greubel, Dec 30 2017
  • Mathematica
    a={};Do[AppendTo[a,IntegerPart[(n^11)^(1/2)]],{n,0,5!}];a
    Table[Floor[Sqrt[n^11]], {n,1,30}] (* G. C. Greubel, Dec 30 2017 *)
  • PARI
    for(n=1,30, print1(floor(sqrt(n^11)), ", ")) \\ G. C. Greubel, Dec 30 2017
    

Extensions

Offset corrected by Alois P. Heinz, Sep 27 2014

A253711 Second partial sums of 11th powers (A008455).

Original entry on oeis.org

1, 2050, 181246, 4554746, 57756371, 473755052, 2867080476, 13850340492, 56214660117, 198578979742, 626254969978, 1796939330902, 4759784085863, 11772194010488, 27434359794488, 60688711622904, 128214959758953, 260009617974234, 508294535087734, 961379452201234, 1764741869856955, 3152422588924004, 5492913065904980
Offset: 1

Views

Author

Luciano Ancora, Jan 10 2015

Keywords

Comments

The formula for the second partial sums of m-th powers is: b(n,m) = (n+1)*F(m) - F(m+1), where F(m) are the m-th Faulhaber's formulas.

Crossrefs

Cf. A008455.

Programs

  • Mathematica
    Table[n (n + 1) (n + 2) (70 n^10 + 700 n^9 + 2310 n^8 + 1680 n^7 - 4655 n^6 - 4410 n^5 + 8240 n^4 + 4120 n^3 - 7819 n^2 + 202 n + 1382)/10920, {n, 1, 20}] (* Vincenzo Librandi, Jan 15 2015 *)
    RecurrenceTable[{a[n] == 2 a[n - 1] - a[n - 2] + n^11, a[1] == 1, a[2] == 2050}, a, {n, 1, 20}] (* Bruno Berselli, Jan 15 2015 *)

Formula

a(n) = n*(n+1)*(n+2)*(70*n^10 + 700*n^9 + 2310*n^8 + 1680*n^7 - 4655*n^6 - 4410*n^5 + 8240*n^4 + 4120*n^3 - 7819*n^2 + 202*n + 1382)/10920.
a(n) = 2*a(n-1) - a(n-2) + n^11.
G.f.: x*(1 + 2036*x + 152637*x^2 + 2203488*x^3 + 9738114*x^4 + 15724248*x^5 + 9738114*x^6 + 2203488*x^7 + 152637*x^8 + 2036*x^9 + x^10) / (1 - x)^14. - Vincenzo Librandi, Jan 15 2015

A004823 Numbers that are the sum of 12 positive 11th powers.

Original entry on oeis.org

12, 2059, 4106, 6153, 8200, 10247, 12294, 14341, 16388, 18435, 20482, 22529, 24576, 177158, 179205, 181252, 183299, 185346, 187393, 189440, 191487, 193534, 195581, 197628, 199675, 354304, 356351, 358398, 360445, 362492, 364539, 366586, 368633, 370680, 372727, 374774
Offset: 1

Views

Author

Keywords

Examples

			From _David A. Corneth_, Aug 04 2020: (Start)
208428902 is in the sequence as 208428902 = 1^11 + 2^11 + 3^11 + 3^11 + 3^11 + 4^11 + 4^11 + 4^11 + 5^11 + 5^11 + 5^11 + 5^11.
562491247 is in the sequence as 562491247 = 2^11 + 2^11 + 2^11 + 2^11 + 2^11 + 3^11 + 4^11 + 5^11 + 5^11 + 5^11 + 5^11 + 6^11.
620052034 is in the sequence as 620052034 = 3^11 + 3^11 + 3^11 + 4^11 + 4^11 + 4^11 + 5^11 + 5^11 + 5^11 + 5^11 + 5^11 + 6^11. (End)
		

Crossrefs

Cf. A008455 (eleventh powers), A003335 - A004812 (same for 3rd - 10th powers).

Programs

  • Mathematica
    Select[Union[Total[#^11]&/@Tuples[Range[3],{12}]],#<+400000&]  (* Harvey P. Dale, Apr 29 2011 *)
  • PARI
    A004823_upto(N, n=12, p=11)=my(P=[x^p|x<-[1..sqrtnint(N-n+1, p)]], S=P); while(n--, S=Set(concat([[x+y|y<-S,x+y<=N]|x<-P])));S \\ M. F. Hasler, Jul 03 2025

A004816 Numbers that are the sum of 5 positive 11th powers.

Original entry on oeis.org

5, 2052, 4099, 6146, 8193, 10240, 177151, 179198, 181245, 183292, 185339, 354297, 356344, 358391, 360438, 531443, 533490, 535537, 708589, 710636, 885735, 4194308, 4196355, 4198402, 4200449, 4202496, 4371454, 4373501, 4375548, 4377595, 4548600, 4550647, 4552694, 4725746
Offset: 1

Views

Author

Keywords

Examples

			From _David A. Corneth_, Aug 04 2020: (Start)
100004375547 is in the sequence as 100004375547 = 2^11 + 2^11 + 3^11 + 4^11 + 10^11.
385311851854 is in the sequence as 385311851854 = 2^11 + 2^11 + 3^11 + 10^11 + 11^11.
743742353408 is in the sequence as 743742353408 = 4^11 + 4^11 + 6^11 + 6^11 + 12^11. (End)
		

Crossrefs

Cf. A008455 (eleventh powers).

A004817 Numbers that are the sum of 6 positive 11th powers.

Original entry on oeis.org

6, 2053, 4100, 6147, 8194, 10241, 12288, 177152, 179199, 181246, 183293, 185340, 187387, 354298, 356345, 358392, 360439, 362486, 531444, 533491, 535538, 537585, 708590, 710637, 712684, 885736, 887783, 1062882, 4194309, 4196356, 4198403, 4200450, 4202497, 4204544, 4371455
Offset: 1

Views

Author

Keywords

Examples

			4817
From _David A. Corneth_, Aug 04 2020: (Start)
8953440236 is in the sequence as 8953440236 = 3^11 + 3^11 + 3^11 + 3^11 + 6^11 + 8^11.
64837279358 is in the sequence as 64837279358 = 3^11 + 5^11 + 5^11 + 7^11 + 9^11 + 9^11.
131385255963 is in the sequence as 131385255963 = 1^11 + 1^11 + 2^11 + 4^11 + 9^11 + 10^11. (End)
		

Crossrefs

Cf. A008455 (eleventh powers).

Programs

  • Mathematica
    With[{nn=5},Select[Union[Total/@Tuples[Range[nn]^11,{6}]],#<=nn^11+5&]] (* Harvey P. Dale, Jun 30 2020 *)

A004818 Numbers that are the sum of 7 positive 11th powers.

Original entry on oeis.org

7, 2054, 4101, 6148, 8195, 10242, 12289, 14336, 177153, 179200, 181247, 183294, 185341, 187388, 189435, 354299, 356346, 358393, 360440, 362487, 364534, 531445, 533492, 535539, 537586, 539633, 708591, 710638, 712685, 714732, 885737, 887784, 889831, 1062883, 1064930, 1240029
Offset: 1

Views

Author

Keywords

Examples

			From _David A. Corneth_, Aug 04 2020: (Start)
8638762722 is in the sequence as 8638762722 = 1^11 + 1^11 + 1^11 + 1^11 + 1^11 + 5^11 + 8^11.
10930416781 is in the sequence as 10930416781 = 2^11 + 2^11 + 3^11 + 3^11 + 6^11 + 7^11 + 8^11.
29728651567 is in the sequence as 29728651567 = 1^11 + 4^11 + 7^11 + 7^11 + 8^11 + 8^11 + 8^11. (End)
		

Crossrefs

Cf. A008455 (eleventh powers).

A004819 Numbers that are the sum of 8 positive 11th powers.

Original entry on oeis.org

8, 2055, 4102, 6149, 8196, 10243, 12290, 14337, 16384, 177154, 179201, 181248, 183295, 185342, 187389, 189436, 191483, 354300, 356347, 358394, 360441, 362488, 364535, 366582, 531446, 533493, 535540, 537587, 539634, 541681, 708592, 710639, 712686, 714733, 716780, 885738
Offset: 1

Views

Author

Keywords

Examples

			From _David A. Corneth_, Aug 04 2020: (Start)
2353238152 is in the sequence as 2353238152 = 3^11 + 3^11 + 3^11 + 4^11 + 4^11 + 4^11 + 6^11 + 7^11.
8594130949 is in the sequence as 8594130949 = 1^11 + 1^11 + 1^11 + 1^11 + 1^11 + 2^11 + 4^11 + 8^11.
9050746288 is in the sequence as 9050746288 = 2^11 + 2^11 + 3^11 + 3^11 + 5^11 + 5^11 + 6^11 + 8^11. (End)
		

Crossrefs

Cf. A008455 (eleventh powers).

A004820 Numbers that are the sum of 9 positive 11th powers.

Original entry on oeis.org

9, 2056, 4103, 6150, 8197, 10244, 12291, 14338, 16385, 18432, 177155, 179202, 181249, 183296, 185343, 187390, 189437, 191484, 193531, 354301, 356348, 358395, 360442, 362489, 364536, 366583, 368630, 531447, 533494, 535541, 537588, 539635, 541682, 543729, 708593, 710640
Offset: 1

Views

Author

Keywords

Examples

			From _David A. Corneth_, Aug 04 2020: (Start)
1088578555 is in the sequence as 1088578555 = 2^11 + 2^11 + 2^11 + 2^11 + 2^11 + 3^11 + 6^11 + 6^11 + 6^11.
2345030787 is in the sequence as 2345030787 = 2^11 + 2^11 + 3^11 + 3^11 + 3^11 + 3^11 + 4^11 + 6^11 + 7^11.
4326193446 is in the sequence as 4326193446 = 1^11 + 1^11 + 3^11 + 3^11 + 4^11 + 4^11 + 6^11 + 7^11 + 7^11. (End)
		

Crossrefs

Cf. A008455 (eleventh powers).

A004821 Numbers that are the sum of 10 positive 11th powers.

Original entry on oeis.org

10, 2057, 4104, 6151, 8198, 10245, 12292, 14339, 16386, 18433, 20480, 177156, 179203, 181250, 183297, 185344, 187391, 189438, 191485, 193532, 195579, 354302, 356349, 358396, 360443, 362490, 364537, 366584, 368631, 370678, 531448, 533495, 535542, 537589, 539636, 541683
Offset: 1

Views

Author

Keywords

Examples

			From _David A. Corneth_, Aug 04 2020: (Start)
432600798 is in the sequence as 432600798 = 1^11 + 2^11 + 2^11 + 4^11 + 4^11 + 4^11 + 4^11 + 4^11 + 5^11 + 6^11.
1695330897 is in the sequence as 1695330897 = 2^11 + 5^11 + 5^11 + 5^11 + 5^11 + 5^11 + 6^11 + 6^11 + 6^11 + 6^11.
2075516485 is in the sequence as 2075516485 = 1^11 + 1^11 + 1^11 + 2^11 + 3^11 + 3^11 + 3^11 + 5^11 + 5^11 + 7^11. (End)
		

Crossrefs

Cf. A008455.

A004822 Numbers that are the sum of 11 positive 11th powers.

Original entry on oeis.org

11, 2058, 4105, 6152, 8199, 10246, 12293, 14340, 16387, 18434, 20481, 22528, 177157, 179204, 181251, 183298, 185345, 187392, 189439, 191486, 193533, 195580, 197627, 354303, 356350, 358397, 360444, 362491, 364538, 366585, 368632, 370679, 372726, 531449, 533496, 535543
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
460807606 is in the sequence as 460807606 = 1^11 + 1^11 + 1^11 + 1^11 + 1^11 + 1^11 + 3^11 + 3^11 + 5^11 + 5^11 + 6^11.
795925198 is in the sequence as 795925198 = 3^11 + 3^11 + 3^11 + 4^11 + 4^11 + 4^11 + 4^11 + 4^11 + 5^11 + 6^11 + 6^11.
1504395992 is in the sequence as 1504395992 = 2^11 + 2^11 + 2^11 + 2^11 + 3^11 + 4^11 + 5^11 + 6^11 + 6^11 + 6^11 + 6^11. (End)
		

Crossrefs

Cf. A008455.
A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Programs

  • Mathematica
    M = 6347807907; m = M^(1/11) // Ceiling; Reap[
    For[a = 1, a <= m, a++, For[b = a, b <= m, b++, For[c = b, c <= m, c++,
    For[d = c, d <= m, d++, For[e = d, e <= m, e++, For[f = e, f <= m, f++,
    For[g = f, g <= m, g++, For[h = g, h <= m, h++, For[i = h, i <= m, i++,
    For[j = i, j <= m, j++, For[k = j, k <= m, k++,
    s = a^11+b^11+c^11+d^11+e^11+f^11+g^11+h^11+i^11+j^11+k^11;
    If[s <= M, Sow[s]]]]]]]]]]]]]][[2, 1]] // Union (* Jean-François Alcover, Dec 01 2020 *)
Showing 1-10 of 43 results. Next