A008475 If n = Product (p_j^k_j) then a(n) = Sum (p_j^k_j) (a(1) = 0 by convention).
0, 2, 3, 4, 5, 5, 7, 8, 9, 7, 11, 7, 13, 9, 8, 16, 17, 11, 19, 9, 10, 13, 23, 11, 25, 15, 27, 11, 29, 10, 31, 32, 14, 19, 12, 13, 37, 21, 16, 13, 41, 12, 43, 15, 14, 25, 47, 19, 49, 27, 20, 17, 53, 29, 16, 15, 22, 31, 59, 12, 61, 33, 16, 64, 18, 16, 67, 21, 26, 14, 71, 17, 73
Offset: 1
Examples
a(180) = a(2^2 * 3^2 * 5) = 2^2 + 3^2 + 5 = 18.
References
- F. J. Budden, The Fascination of Groups, Cambridge, 1972; pp. 322, 573.
- József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter IV, p. 147.
- T. Z. Xuan, On some sums of large additive number theoretic functions (in Chinese), Journal of Beijing normal university, No. 2 (1984), pp. 11-18.
Links
- Daniel Forgues, Table of n, a(n) for n = 1..100000 (first 10000 terms from T. D. Noe)
- John Bamberg, Grant Cairns and Devin Kilminster, The crystallographic restriction, permutations and Goldbach's conjecture, Amer. Math. Monthly, Vol. 110, No. 3 (March 2003), pp. 202-209.
- Roger B. Eggleton and William P. Galvin, Upper Bounds on the Sum of Principal Divisors of an Integer, Mathematics Magazine, Vol. 77, No. 3 (Jun., 2004), pp. 190-200.
Crossrefs
Programs
-
Haskell
a008475 1 = 0 a008475 n = sum $ a141809_row n -- Reinhard Zumkeller, Jan 29 2013, Oct 10 2011
-
Maple
A008475 := proc(n) local e,j; e := ifactors(n)[2]: add(e[j][1]^e[j][2], j=1..nops(e)) end: seq(A008475(n), n=1..60); # Peter Luschny, Jan 17 2010
-
Mathematica
f[n_] := Plus @@ Power @@@ FactorInteger@ n; f[1] = 0; Array[f, 73]
-
PARI
for(n=1,100,print1(sum(i=1,omega(n), component(component(factor(n),1),i)^component(component(factor(n),2),i)),","))
-
PARI
a(n)=local(t);if(n<1,0,t=factor(n);sum(k=1,matsize(t)[1],t[k,1]^t[k,2])) /* Michael Somos, Oct 20 2004 */
-
PARI
A008475(n) = { my(f=factor(n)); vecsum(vector(#f~,i,f[i,1]^f[i,2])); }; \\ Antti Karttunen, Nov 17 2017
-
Python
from sympy import factorint def a(n): f=factorint(n) return 0 if n==1 else sum([i**f[i] for i in f]) # Indranil Ghosh, May 20 2017
Formula
Additive with a(p^e) = p^e.
Sum_{k=1..n} a(k) ~ (Pi^2/12)* n^2/log(n) + O(n^2/log(n)^2) (Xuan, 1984). - Amiram Eldar, Mar 04 2021
Comments