cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 58 results. Next

A082081 a(n) = fixed point when the pseudo-log function A008475[ ] is iterated.

Original entry on oeis.org

0, 2, 3, 4, 5, 5, 7, 8, 9, 7, 11, 7, 13, 9, 8, 16, 17, 11, 19, 9, 7, 13, 23, 11, 25, 8, 27, 11, 29, 7, 31, 32, 9, 19, 7, 13, 37, 7, 16, 13, 41, 7, 43, 8, 9, 25, 47, 19, 49, 27, 9, 17, 53, 29, 16, 8, 13, 31, 59, 7, 61, 9, 16, 64, 11, 16, 67, 7, 8, 9, 71, 17, 73, 16, 11, 23, 11, 11, 79, 7, 81
Offset: 1

Views

Author

Labos Elemer, Apr 08 2003

Keywords

Comments

Fixed point is always a prime or a power of prime: fixed points are terms of A000961.

Examples

			n=10!=3628800:list to fixed point={3628800,369,50,27}.
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] ep[x_] := Table[Part[ffi[x], 2*w], {w, 1, lf[x]}] sex[x_] := Apply[Plus, ba[x]^ep[x]] Table[FixedPoint[sex, w], {w, 1, 128}]

A081403 a(n) = A008475(n^2).

Original entry on oeis.org

0, 4, 9, 16, 25, 13, 49, 64, 81, 29, 121, 25, 169, 53, 34, 256, 289, 85, 361, 41, 58, 125, 529, 73, 625, 173, 729, 65, 841, 38, 961, 1024, 130, 293, 74, 97, 1369, 365, 178, 89, 1681, 62, 1849, 137, 106, 533, 2209, 265, 2401, 629, 298, 185, 2809, 733, 146, 113
Offset: 1

Views

Author

Labos Elemer, Mar 31 2003

Keywords

Examples

			a(1) = 0 since 1 has no prime factor; n = p^2: a(p^2) = p^2; n = 6: a(6) = 4+9 = 13; a(u*w) = a(u)+a(w) if gcd(u,w) = 1; a(21) = a(7)+a(3) = 49+9 = 58; additive with respect of unitary prime divisor decompositions.
		

Crossrefs

Programs

  • Maple
    a:= n-> add(i[1]^i[2], i=ifactors(n^2)[2]):
    seq(a(n), n=1..60);  # Alois P. Heinz, Sep 03 2019
  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] ep[x_] := Table[Part[ffi[x], 2*w], {w, 1, lf[x]}] supo[x_] := Apply[Plus, ba[x]^ep[x]] Table[supo[w], {w, 1, 25}]
  • PARI
    f(n) = { my(f=factor(n)); vecsum(vector(#f~, i, f[i, 1]^f[i, 2])); }; \\ A008475
    a(n) = f(n^2); \\ Michel Marcus, Sep 03 2019
    
  • Python
    from sympy import factorint
    def A081403(n): return sum(p**(e<<1) for p,e in factorint(n).items()) # Chai Wah Wu, Jul 01 2024

Formula

Additive with a(p^e) = p^(2e).

A114518 Numbers n such that A008475(n) is prime.

Original entry on oeis.org

2, 3, 5, 6, 7, 10, 11, 12, 13, 17, 18, 19, 22, 23, 24, 28, 29, 31, 34, 36, 37, 40, 41, 43, 47, 48, 52, 53, 54, 58, 59, 61, 67, 71, 72, 73, 76, 79, 82, 83, 88, 89, 97, 100, 101, 103, 107, 108, 109, 112, 113, 118, 127, 131, 137, 139, 142, 148, 149, 151, 157, 160, 162, 163
Offset: 1

Views

Author

Leroy Quet, Dec 05 2005

Keywords

Examples

			24 = 2^3 * 3 and 2^3 + 3 = 11, which is prime. So 24 is included.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Plus @@ Power @@@ FactorInteger[n]; Select[Range[165], PrimeQ[f[ # ]] &] (* Ray Chandler, Dec 07 2005 *)
  • PARI
    A008475(n)=local(t);if(n<1,0,t=factor(n);sum(k=1,matsize(t)[1],t[k,1]^t[k,2])); for(i=1,500,if(isprime(A008475(i)),print1(i,","))) (Herrgesell)

Extensions

Extended by Ray Chandler and Lambert Herrgesell (zero815(AT)googlemail.com), Dec 07 2005

A082083 a(n)=A082081[n! ]=A082081[A000142[n]] Fixed points of iterated A008475 function initiated at factorials as initial values.

Original entry on oeis.org

0, 2, 5, 11, 16, 7, 37, 149, 7, 27, 11, 11, 23, 2389, 49, 11, 31, 19, 67, 109, 13, 8, 25, 8, 461, 179, 1319, 9, 193, 16, 7, 4931, 121, 7, 9, 8, 7, 8, 2895630887, 25, 19, 13, 19, 41, 2209493509721, 32, 5939, 23, 43, 11
Offset: 1

Views

Author

Labos Elemer, Apr 08 2003

Keywords

Examples

			Fixed point is always a prime or a true power of prime:
a term from A000961.
n=20!=2432902008176640000, a(20)=109 because
fixed point list={2432902008176640000,269439,214,109}}
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] ep[x_] := Table[Part[ffi[x], 2*w], {w, 1, lf[x]}] sex[x_] := Apply[Plus, ba[x]^ep[x]] Table[FixedPoint[sex, w! ], {w, 1, 128}]

A081404 a(n) = A008475(prime(n)-1).

Original entry on oeis.org

0, 2, 4, 5, 7, 7, 16, 11, 13, 11, 10, 13, 13, 12, 25, 17, 31, 12, 16, 14, 17, 18, 43, 19, 35, 29, 22, 55, 31, 23, 18, 20, 25, 28, 41, 30, 20, 83, 85, 47, 91, 18, 26, 67, 53, 22, 17, 42, 115, 26, 37, 26, 24, 127, 256, 133, 71, 34, 30, 20, 52, 77, 28, 38, 24, 83, 21, 26, 175, 36
Offset: 1

Views

Author

Labos Elemer, Mar 31 2003

Keywords

Examples

			a(1) = 0 since 1 has no prime factor.
a(100) = A008475(541-1) = A008475(4*27*5) = 4+27+5 = 36.
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] ep[x_] := Table[Part[ffi[x], 2*w], {w, 1, lf[x]}] supo[x_] := Apply[Plus, ba[x]^ep[x]] Table[supo[w], {w, 1, 25}]

A114519 a(n) = A008475(A114518(n)).

Original entry on oeis.org

2, 3, 5, 5, 7, 7, 11, 7, 13, 17, 11, 19, 13, 23, 11, 11, 29, 31, 19, 13, 37, 13, 41, 43, 47, 19, 17, 53, 29, 31, 59, 61, 67, 71, 17, 73, 23, 79, 43, 83, 19, 89, 97, 29, 101, 103, 107, 31, 109, 23, 113, 61, 127, 131, 137, 139, 73, 41, 149, 151, 157, 37, 83, 163, 19, 167, 47
Offset: 1

Views

Author

Leroy Quet, Dec 05 2005

Keywords

Examples

			A114518(15) = 24 = 2^3 * 3 and 2^3 + 3 = 11 (which is prime). So a(15) = 11.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Plus @@ Power @@@ FactorInteger[n]; Select[f /@ Range[175], PrimeQ[ # ] &] (* Ray Chandler, Dec 07 2005 *)
  • PARI
    A008475(n)=local(t);if(n<1,0,t=factor(n);sum(k=1,matsize(t)[1],t[k,1]^t[k,2])); for(i=1,500,if(isprime(A008475(i)),print1(A008475(i),","))) (Herrgesell)

Extensions

Extended by Ray Chandler and Lambert Herrgesell (zero815(AT)googlemail.com), Dec 07 2005

A159077 a(n) = A008475(n) + 1.

Original entry on oeis.org

1, 3, 4, 5, 6, 6, 8, 9, 10, 8, 12, 8, 14, 10, 9, 17, 18, 12, 20, 10, 11, 14, 24, 12, 26, 16, 28, 12, 30, 11, 32, 33, 15, 20, 13, 14, 38, 22, 17, 14, 42, 13, 44, 16, 15, 26, 48, 20, 50, 28, 21, 18, 54, 30, 17, 16, 23, 32, 60, 13, 62, 34, 17, 65, 19, 17, 68, 22, 27, 15, 72, 18, 74
Offset: 1

Views

Author

Jaroslav Krizek, Apr 04 2009

Keywords

Comments

If n = Product (p_i^k_i) for i = 1, …, j then a(n) is sum of divisor d from set of divisors{1, p_1^k_1, p_2^k_2, …, p_j^k_j}.

Examples

			For n = 12, set of divisors {1, p_1^k_1, p_2^k_2, …, p_j^k_j}: {1, 3, 4}. a(12) = 1+3+4=8.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := 1 + Plus @@ Power @@@ FactorInteger@ n; f[1] = 1; Array[f, 60]
  • PARI
    a(n)=local(t); if(n<1, 0, t=factor(n); 1+sum(k=1, matsize(t)[1], t[k, 1]^t[k, 2])) /* Anton Mosunov, Jan 05 2017 */

Formula

a(n) = [Sum_(i=1,…, j) p_i^k_i] + 1 = A000203(n) - A178636(n).
a(1) = 1, a(p) = p+1, a(pq) = p+q+1, a(pq...z) = p+q+...+z+1, a(p^k) = p^k+1, for p, q = primes, k = natural numbers, pq...z = product of k (k > 2) distinct primes p, q, ..., z.

Extensions

Edited by N. J. A. Sloane, Apr 07 2009

A331000 Unitary Ruth-Aaron numbers: numbers k such that A008475(k) = A008475(k+1).

Original entry on oeis.org

5, 77, 714, 948, 2491, 2996, 3450, 4293, 5405, 6669, 9125, 10807, 13869, 14587, 16932, 17346, 19511, 19967, 23323, 26642, 27104, 31931, 33019, 37925, 41124, 43616, 48635, 52554, 55499, 58077, 58695, 79248, 80837, 86088, 89979, 95709, 98644, 99163, 108458, 117467
Offset: 1

Views

Author

Amiram Eldar, Jan 05 2020

Keywords

Comments

A variation of Ruth-Aaron numbers with unitary prime-power divisors instead of prime divisors.

Examples

			5 is a term since A008475(5) = A008475(6) = 5.
		

Crossrefs

Programs

  • Mathematica
    s[1] = 0; s[n_] := Plus @@ (Power @@@ FactorInteger[n]); seq = {}; s1 = 0; Do[s2 = s[n]; If[s1 == s2, AppendTo[seq, n - 1]]; s1 = s2, {n, 2, 10^5}]; seq

A078771 a(n) = A008475(n) - A001414(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 2, 3, 0, 0, 0, 0, 0, 0, 8, 0, 3, 0, 0, 0, 0, 0, 2, 15, 0, 18, 0, 0, 0, 0, 22, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 8, 35, 15, 0, 0, 0, 18, 0, 2, 0, 0, 0, 0, 0, 0, 3, 52, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 15, 0, 0, 0, 0, 8, 69, 0, 0, 0, 0, 0, 0, 2, 0, 3, 0, 0, 0, 0, 0, 22, 0, 35, 3, 15
Offset: 1

Views

Author

Benoit Cloitre, Jan 11 2003

Keywords

Comments

a(n) is not zero if n is in A046790.

Crossrefs

Programs

Formula

Additive with a(p^e) = p^e - p*e. - Amiram Eldar, May 03 2025

A081402 a(n) = A008475(n!).

Original entry on oeis.org

0, 2, 5, 11, 16, 30, 37, 149, 221, 369, 380, 1310, 1323, 2389, 2975, 33695, 33712, 72312, 72331, 269439, 282855, 545109, 545132, 4254514, 4269514, 8463974, 9999248, 35167130, 35167159, 71972737, 71972768, 2152347552, 2161914700
Offset: 1

Views

Author

Labos Elemer, Mar 31 2003

Keywords

Examples

			a(1) = 0 since 1! = 1 has no prime factor.
a(8) = 2^7 + 3^2 + 5 + 7 = 149 since 8! = 2^7*3^2*5*7.
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]]; lf[x_] := Length[FactorInteger[x]]; ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}]; ep[x_] := Table[Part[ffi[x], 2*w], {w, 1, lf[x]}]; supo[x_] := Apply[Plus, ba[x]^ep[x]]; Table[supo[w], {w, 1, 25}]
  • PARI
    a(n) = my(f=factor(n!)); sum(k=1, #f~, f[k,1]^f[k,2]); \\ Michel Marcus, Jul 09 2018

Formula

From Amiram Eldar, Dec 10 2024: (Start)
a(n) = 2^(n-s_2(n)) + O(sqrt(3)^n), where s_2(n) = A000120(n).
Sum_{k=1..n} a(k) = 2^(n+O(log(n))).
Both formulas from De Koninck and Verreault (2024, pp. 51-52, eq. (3.10) and (3.16)). (End)
Showing 1-10 of 58 results. Next