cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A008475 If n = Product (p_j^k_j) then a(n) = Sum (p_j^k_j) (a(1) = 0 by convention).

Original entry on oeis.org

0, 2, 3, 4, 5, 5, 7, 8, 9, 7, 11, 7, 13, 9, 8, 16, 17, 11, 19, 9, 10, 13, 23, 11, 25, 15, 27, 11, 29, 10, 31, 32, 14, 19, 12, 13, 37, 21, 16, 13, 41, 12, 43, 15, 14, 25, 47, 19, 49, 27, 20, 17, 53, 29, 16, 15, 22, 31, 59, 12, 61, 33, 16, 64, 18, 16, 67, 21, 26, 14, 71, 17, 73
Offset: 1

Views

Author

Keywords

Comments

For n>1, a(n) is the minimal number m such that the symmetric group S_m has an element of order n. - Ahmed Fares (ahmedfares(AT)my-deja.com), Jun 26 2001
If gcd(u,w) = 1, then a(u*w) = a(u) + a(w); behaves like logarithm; compare A001414 or A056239. - Labos Elemer, Mar 31 2003

Examples

			a(180) = a(2^2 * 3^2 * 5) = 2^2 + 3^2 + 5 = 18.
		

References

  • F. J. Budden, The Fascination of Groups, Cambridge, 1972; pp. 322, 573.
  • József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter IV, p. 147.
  • T. Z. Xuan, On some sums of large additive number theoretic functions (in Chinese), Journal of Beijing normal university, No. 2 (1984), pp. 11-18.

Crossrefs

Programs

  • Haskell
    a008475 1 = 0
    a008475 n = sum $ a141809_row n
    -- Reinhard Zumkeller, Jan 29 2013, Oct 10 2011
    
  • Maple
    A008475 := proc(n) local e,j; e := ifactors(n)[2]:
    add(e[j][1]^e[j][2], j=1..nops(e)) end:
    seq(A008475(n), n=1..60); # Peter Luschny, Jan 17 2010
  • Mathematica
    f[n_] := Plus @@ Power @@@ FactorInteger@ n; f[1] = 0; Array[f, 73]
  • PARI
    for(n=1,100,print1(sum(i=1,omega(n), component(component(factor(n),1),i)^component(component(factor(n),2),i)),","))
    
  • PARI
    a(n)=local(t);if(n<1,0,t=factor(n);sum(k=1,matsize(t)[1],t[k,1]^t[k,2])) /* Michael Somos, Oct 20 2004 */
    
  • PARI
    A008475(n) = { my(f=factor(n)); vecsum(vector(#f~,i,f[i,1]^f[i,2])); }; \\ Antti Karttunen, Nov 17 2017
    
  • Python
    from sympy import factorint
    def a(n):
        f=factorint(n)
        return 0 if n==1 else sum([i**f[i] for i in f]) # Indranil Ghosh, May 20 2017

Formula

Additive with a(p^e) = p^e.
a(A000961(n)) = A000961(n); a(A005117(n)) = A001414(A005117(n)).
a(n) = Sum_{k=1..A001221(n)} A027748(n,k) ^ A124010(n,k) for n>1. - Reinhard Zumkeller, Oct 10 2011
a(n) = Sum_{k=1..A001221(n)} A141809(n,k) for n > 1. - Reinhard Zumkeller, Jan 29 2013
Sum_{k=1..n} a(k) ~ (Pi^2/12)* n^2/log(n) + O(n^2/log(n)^2) (Xuan, 1984). - Amiram Eldar, Mar 04 2021

A023888 Sum of prime power divisors of n (1 included).

Original entry on oeis.org

1, 3, 4, 7, 6, 6, 8, 15, 13, 8, 12, 10, 14, 10, 9, 31, 18, 15, 20, 12, 11, 14, 24, 18, 31, 16, 40, 14, 30, 11, 32, 63, 15, 20, 13, 19, 38, 22, 17, 20, 42, 13, 44, 18, 18, 26, 48, 34, 57, 33, 21, 20, 54, 42, 17, 22, 23, 32, 60, 15, 62, 34, 20, 127, 19, 17, 68, 24, 27
Offset: 1

Views

Author

Keywords

Comments

Sum of n-th row of triangle A210208. [Reinhard Zumkeller, Mar 18 2012]

Examples

			For n = 12, set of such divisors is {1, 2, 3, 4}; a(12) = 1+2+3+4 = 10. From
		

Crossrefs

Programs

  • Haskell
    a023888 = sum . a210208_row  -- Reinhard Zumkeller, Mar 18 2012
    
  • Maple
    f:= n -> 1 + add((t[1]^(t[2]+1)-t[1])/(t[1]-1),t=ifactors(n)[2]):
    map(f, [$1..100]); # Robert Israel, Jan 04 2017
  • Mathematica
    Array[ Plus @@ (Select[ Divisors[ # ], (Length[ FactorInteger[ # ] ]<=1)& ])&, 70 ]
  • PARI
    for(n=1,100, s=1; fordiv(n,d, if((ispower(d,,&z)&&isprime(z)) || isprime(d),s+=d)); print1(s,", "))
    
  • PARI
    a(n) = {
      my(f = factor(n), fsz = matsize(f)[1]);
      1 + sum(k = 1, fsz, f[k,1]*(f[k,1]^f[k,2] - 1)\(f[k,1]-1));
    };
    vector(100, n, a(n))  \\ Gheorghe Coserea, Jan 04 2017

Formula

a(n) = A000203(n) - A035321(n) = A023889(n) + 1.
a(1) = 1, a(p) = p+1, a(pq) = p+q+1, a(pq...z) = (p+q+...+z) + 1, a(p^k) = (p^(k+1)-1) / (p-1), for p, q = primes, k = natural numbers, pq...z = product of k (k > 2) distinct primes p, q, ..., z.
G.f.: x/(1 - x) + Sum_{k>=2} floor(1/omega(k))*k*x^k/(1 - x^k), where omega(k) is the number of distinct prime factors (A001221). - Ilya Gutkovskiy, Jan 04 2017

A178636 If n = Product (p_i^k_i) for i = 1, ..., j then a(n) is the sum of the divisors d that are not in the set {1, p_1^k_1, p_2^k_2, ..., p_j^k_j}.

Original entry on oeis.org

0, 0, 0, 2, 0, 6, 0, 6, 3, 10, 0, 20, 0, 14, 15, 14, 0, 27, 0, 32, 21, 22, 0, 48, 5, 26, 12, 44, 0, 61, 0, 30, 33, 34, 35, 77, 0, 38, 39, 76, 0, 83, 0, 68, 63, 46, 0, 104, 7, 65, 51, 80, 0, 90, 55, 104, 57, 58, 0, 155, 0, 62, 87, 62, 65, 127, 0, 104, 69, 129, 0, 177, 0, 74, 95, 116, 77, 149, 0, 164, 39, 82, 0, 209, 85, 86, 87, 160, 0, 217, 91, 140, 93, 94, 95, 216, 0, 119, 135, 187
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2010

Keywords

Examples

			For n = 12, set of divisors {1, p_1^k_1, p_2^k_2, ..., p_j^k_j}: {1, 3, 4}. Complement of divisors: {2, 6, 12}. a(12) = 2+6+12 = 20.
		

Formula

a(n) = A000203(n) - A159077(n) = A167515(n) - 1.
a(1) = 0, a(p) = 0, a(pq) = pq, a(pq...z) = [(p+1)* (q+1)* ... *(z+1)] - [p+q+ ...+z] - 1, a(p^k) = (p^k-p)/(p-1), for p, q = primes, k = natural numbers, pq...z = product of k (k > 2) distinct primes p, q, ..., z.

Extensions

I edited the definition to fix the grammar and make it understandable.
a(100) corrected by Georg Fischer, Dec 10 2022
Showing 1-3 of 3 results.