cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A008475 If n = Product (p_j^k_j) then a(n) = Sum (p_j^k_j) (a(1) = 0 by convention).

Original entry on oeis.org

0, 2, 3, 4, 5, 5, 7, 8, 9, 7, 11, 7, 13, 9, 8, 16, 17, 11, 19, 9, 10, 13, 23, 11, 25, 15, 27, 11, 29, 10, 31, 32, 14, 19, 12, 13, 37, 21, 16, 13, 41, 12, 43, 15, 14, 25, 47, 19, 49, 27, 20, 17, 53, 29, 16, 15, 22, 31, 59, 12, 61, 33, 16, 64, 18, 16, 67, 21, 26, 14, 71, 17, 73
Offset: 1

Views

Author

Keywords

Comments

For n>1, a(n) is the minimal number m such that the symmetric group S_m has an element of order n. - Ahmed Fares (ahmedfares(AT)my-deja.com), Jun 26 2001
If gcd(u,w) = 1, then a(u*w) = a(u) + a(w); behaves like logarithm; compare A001414 or A056239. - Labos Elemer, Mar 31 2003

Examples

			a(180) = a(2^2 * 3^2 * 5) = 2^2 + 3^2 + 5 = 18.
		

References

  • F. J. Budden, The Fascination of Groups, Cambridge, 1972; pp. 322, 573.
  • József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter IV, p. 147.
  • T. Z. Xuan, On some sums of large additive number theoretic functions (in Chinese), Journal of Beijing normal university, No. 2 (1984), pp. 11-18.

Crossrefs

Programs

  • Haskell
    a008475 1 = 0
    a008475 n = sum $ a141809_row n
    -- Reinhard Zumkeller, Jan 29 2013, Oct 10 2011
    
  • Maple
    A008475 := proc(n) local e,j; e := ifactors(n)[2]:
    add(e[j][1]^e[j][2], j=1..nops(e)) end:
    seq(A008475(n), n=1..60); # Peter Luschny, Jan 17 2010
  • Mathematica
    f[n_] := Plus @@ Power @@@ FactorInteger@ n; f[1] = 0; Array[f, 73]
  • PARI
    for(n=1,100,print1(sum(i=1,omega(n), component(component(factor(n),1),i)^component(component(factor(n),2),i)),","))
    
  • PARI
    a(n)=local(t);if(n<1,0,t=factor(n);sum(k=1,matsize(t)[1],t[k,1]^t[k,2])) /* Michael Somos, Oct 20 2004 */
    
  • PARI
    A008475(n) = { my(f=factor(n)); vecsum(vector(#f~,i,f[i,1]^f[i,2])); }; \\ Antti Karttunen, Nov 17 2017
    
  • Python
    from sympy import factorint
    def a(n):
        f=factorint(n)
        return 0 if n==1 else sum([i**f[i] for i in f]) # Indranil Ghosh, May 20 2017

Formula

Additive with a(p^e) = p^e.
a(A000961(n)) = A000961(n); a(A005117(n)) = A001414(A005117(n)).
a(n) = Sum_{k=1..A001221(n)} A027748(n,k) ^ A124010(n,k) for n>1. - Reinhard Zumkeller, Oct 10 2011
a(n) = Sum_{k=1..A001221(n)} A141809(n,k) for n > 1. - Reinhard Zumkeller, Jan 29 2013
Sum_{k=1..n} a(k) ~ (Pi^2/12)* n^2/log(n) + O(n^2/log(n)^2) (Xuan, 1984). - Amiram Eldar, Mar 04 2021

A073093 Number of prime power divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2, 3, 3, 5, 2, 4, 2, 4, 3, 3, 2, 5, 3, 3, 4, 4, 2, 4, 2, 6, 3, 3, 3, 5, 2, 3, 3, 5, 2, 4, 2, 4, 4, 3, 2, 6, 3, 4, 3, 4, 2, 5, 3, 5, 3, 3, 2, 5, 2, 3, 4, 7, 3, 4, 2, 4, 3, 4, 2, 6, 2, 3, 4, 4, 3, 4, 2, 6, 5, 3, 2, 5, 3, 3, 3, 5, 2, 5, 3, 4, 3, 3, 3, 7, 2, 4, 4, 5, 2, 4, 2, 5, 4
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 24 2002

Keywords

Comments

Also, number of prime divisors of 2n (counted with multiplicity).
A001221(n) < a(n) <= A000005(n) for all n; a(n)=A001221(n)+1 iff n is squarefree (A005117); a(n)=A000005(n) iff n is a prime power (A000961).
a(n) is also the number of kBenoit Cloitre, Oct 13 2002
a(n) is also 1 + the number of divisors of n with omega(d)=1, where omega is A001221. - Enrique Pérez Herrero, Nov 05 2009
Length of n-th row of triangle A210208. - Reinhard Zumkeller, Mar 18 2012
a(n) depends only on the prime signature of n with a(A025487(n)) = 1, 2, 3, 3, 4, 4, 5, 5, 4, 6, 5, 6, 5, 7, 6, 7 ,.. = A036041(n)+1; (n>=1). - R. J. Mathar, May 28 2017

Crossrefs

Cf. A000961, A023888, A054372. Bisection of A001222.

Programs

  • Haskell
    a073093 = length . a210208_row  -- Reinhard Zumkeller, Mar 18 2012
    
  • Magma
    [n eq 1 select 1 else &+[p[2]: p in Factorization(n)]+1: n in [1..100]]; // Vincenzo Librandi, Jan 06 2017
  • Maple
    seq(numtheory:-bigomega(n)+1, n=1..1000); # Robert Israel, Sep 06 2015
  • Mathematica
    f[n_] := Plus @@ Flatten[ Table[1, {#[[2]]}] & /@ FactorInteger[n]]; Table[ f[2n], {n, 105}] (* Robert G. Wilson v, Dec 23 2004 *)
    A001221[n_] := (Length[ FactorInteger[n]]); SetAttributes[A001221, Listable]; A073093[n_]:=Length[Select[A001221[Divisors[n]], # == 1 &]]; (* Enrique Pérez Herrero, Nov 05 2009 *)
    PrimeOmega[Range[100]] + 1 (* Paolo Xausa, Nov 23 2024 *)
  • MuPAD
    numlib::Omega (2*n)$ n=1..105 // Zerinvary Lajos, May 13 2008
    
  • PARI
    a(n)=sum(k=1,n,if(1-polresultant(polcyclo(n),polcyclo(k)),1,0))
    
  • PARI
    A073093(n)=bigomega(n)+1   \\ M. F. Hasler, Dec 08 2010
    

Formula

If n = Product (p_j^k_j), a(n) = 1 + Sum (k_j).
a(n) = bigomega(n)+1 = A001222(n)+1 = A001222(2*n).
a(n) = if n=1 then 1 else a(A032742(n)) + 1. - Reinhard Zumkeller, Sep 24 2009
a(n) = max { a(d) ; d 1. - David W. Wilson, Dec 08 2010
a(n) = Sum_{k = 1 .. A001221(n)} A010055(A027750(n,k)). - Reinhard Zumkeller, Mar 18 2012
G.f.: x/(1 - x) + Sum_{k>=2} floor(1/omega(k))*x^k/(1 - x^k), where omega(k) is the number of distinct prime factors (A001221). - Ilya Gutkovskiy, Jan 04 2017

A023889 Sum of the prime power divisors of n (not including 1).

Original entry on oeis.org

0, 2, 3, 6, 5, 5, 7, 14, 12, 7, 11, 9, 13, 9, 8, 30, 17, 14, 19, 11, 10, 13, 23, 17, 30, 15, 39, 13, 29, 10, 31, 62, 14, 19, 12, 18, 37, 21, 16, 19, 41, 12, 43, 17, 17, 25, 47, 33, 56, 32, 20, 19, 53, 41, 16, 21, 22, 31, 59, 14, 61, 33, 19, 126, 18, 16, 67, 23, 26, 14
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Array[ Plus @@ (Select[ Divisors[ # ], PrimePowerQ ])&, 80 ]
  • PARI
    a(n) = sumdiv(n, d, if(isprimepower(d), d)); \\ Michel Marcus, Mar 21 2017; corrected by Daniel Suteu, Jul 20 2018
    
  • PARI
    a(n) = my(f = factor(n)); sum(k = 1, #f~, f[k, 1] * (f[k, 1]^f[k, 2] - 1) / (f[k, 1] - 1)) \\ Daniel Suteu, Jul 20 2018

Formula

G.f.: Sum_{k>=2} floor(1/omega(k))*k*x^k/(1 - x^k), where omega(k) is the number of distinct prime factors (A001221). - Ilya Gutkovskiy, Jan 04 2017
a(n) = A023888(n) - 1. - Michel Marcus, Mar 21 2017
a(n) = Sum_{d|n} d * [omega(d) = 1], where omega is the number of distinct prime factors and [ ] is the Iverson bracket. - Wesley Ivan Hurt, Jan 28 2021

A210208 Triangle read by rows in which row n lists the divisors of n that are prime powers, A000961.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 2, 4, 1, 5, 1, 2, 3, 1, 7, 1, 2, 4, 8, 1, 3, 9, 1, 2, 5, 1, 11, 1, 2, 3, 4, 1, 13, 1, 2, 7, 1, 3, 5, 1, 2, 4, 8, 16, 1, 17, 1, 2, 3, 9, 1, 19, 1, 2, 4, 5, 1, 3, 7, 1, 2, 11, 1, 23, 1, 2, 3, 4, 8, 1, 5, 25, 1, 2, 13, 1, 3, 9, 27, 1, 2, 4, 7
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 18 2012

Keywords

Comments

{T(n,k): k = 1..A073093(n)} subset of {A027750(n,k): k = 1..A000005(n)} for all n.

Examples

			Table begins:
  1;
  1, 2;
  1, 3;
  1, 2, 4;
  1, 5;
  1, 2, 3;
  1, 7;
  1, 2, 4, 8;
  1, 3, 9;
  1, 2, 5;
  1, 11;
  1, 2, 3, 4; - _Geoffrey Critzer_, Feb 08 2015
		

Crossrefs

Cf. A073093 (row lengths), A023888 (row sums), A034699 (row maxima), A183091 (row products).

Programs

  • Haskell
    a210208 n k = a210208_tabf !! (n-1) !! (n-1)
    a210208_row n = a210208_tabf !! (n-1)
    a210208_tabf = map (filter ((== 1) . a010055)) a027750_tabf
    
  • Mathematica
    Table[Prepend[Select[Divisors[n], PrimeNu[#] == 1 &], 1], {n, 1, 10}]//Grid (* Geoffrey Critzer, Feb 08 2015 *)
  • PARI
    row(n) = select(x -> omega(x) < 2, divisors(n)); \\ Amiram Eldar, May 02 2025

Formula

A034699(n) = T(n,A073093(n)) = maximum of n-th row.

A183091 a(n) is the product of the divisors p^k of n where p is prime and k >= 1.

Original entry on oeis.org

1, 2, 3, 8, 5, 6, 7, 64, 27, 10, 11, 24, 13, 14, 15, 1024, 17, 54, 19, 40, 21, 22, 23, 192, 125, 26, 729, 56, 29, 30, 31, 32768, 33, 34, 35, 216, 37, 38, 39, 320, 41, 42, 43, 88, 135, 46, 47, 3072, 343, 250, 51, 104, 53, 1458
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2010

Keywords

Comments

Product of n-th row of triangle A210208. - Reinhard Zumkeller, Mar 18 2012

Examples

			For n = 12, set of such divisors is {1, 2, 3, 4}; a(12) = 1*2*3*4 = 24.
		

Crossrefs

Programs

  • Haskell
    a183091 = product . a210208_row  -- Reinhard Zumkeller, Mar 18 2012
    
  • Maple
    A183091 := proc(n) local a,d; a := 1 ;for d in numtheory[divisors](n) minus {1} do  if nops( numtheory[factorset](d)) = 1 then a := a*d; end if; end do: a ; end proc: # R. J. Mathar, Apr 14 2011
  • Mathematica
    Table[Product[d, {d, Select[Divisors[n], Length[FactorInteger[#]] == 1 &]}], {n,1, 54}] (* Geoffrey Critzer, Mar 18 2015 *)
    f[p_, e_] := p^(e*(e+1)/2); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 31 2023 *)
  • PARI
    a(n)=my(f=factor(n)); prod(i=1,#f~, f[i,1]^binomial(f[i,2]+1,2)) \\ Charles R Greathouse IV, Nov 11 2014

Formula

a(n) = A007955(n) / A183092(n).
Multiplicative with a(p^k) = p^(k*(k+1)/2).
The Dirichlet g.f. of a(n) / abs(A153038(n)) is Product_{k >= 0} zeta(s+k). - Álvar Ibeas, Nov 10 2014

A159077 a(n) = A008475(n) + 1.

Original entry on oeis.org

1, 3, 4, 5, 6, 6, 8, 9, 10, 8, 12, 8, 14, 10, 9, 17, 18, 12, 20, 10, 11, 14, 24, 12, 26, 16, 28, 12, 30, 11, 32, 33, 15, 20, 13, 14, 38, 22, 17, 14, 42, 13, 44, 16, 15, 26, 48, 20, 50, 28, 21, 18, 54, 30, 17, 16, 23, 32, 60, 13, 62, 34, 17, 65, 19, 17, 68, 22, 27, 15, 72, 18, 74
Offset: 1

Views

Author

Jaroslav Krizek, Apr 04 2009

Keywords

Comments

If n = Product (p_i^k_i) for i = 1, …, j then a(n) is sum of divisor d from set of divisors{1, p_1^k_1, p_2^k_2, …, p_j^k_j}.

Examples

			For n = 12, set of divisors {1, p_1^k_1, p_2^k_2, …, p_j^k_j}: {1, 3, 4}. a(12) = 1+3+4=8.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := 1 + Plus @@ Power @@@ FactorInteger@ n; f[1] = 1; Array[f, 60]
  • PARI
    a(n)=local(t); if(n<1, 0, t=factor(n); 1+sum(k=1, matsize(t)[1], t[k, 1]^t[k, 2])) /* Anton Mosunov, Jan 05 2017 */

Formula

a(n) = [Sum_(i=1,…, j) p_i^k_i] + 1 = A000203(n) - A178636(n).
a(1) = 1, a(p) = p+1, a(pq) = p+q+1, a(pq...z) = p+q+...+z+1, a(p^k) = p^k+1, for p, q = primes, k = natural numbers, pq...z = product of k (k > 2) distinct primes p, q, ..., z.

Extensions

Edited by N. J. A. Sloane, Apr 07 2009

A284117 Sum of proper prime power divisors of n.

Original entry on oeis.org

0, 0, 0, 4, 0, 0, 0, 12, 9, 0, 0, 4, 0, 0, 0, 28, 0, 9, 0, 4, 0, 0, 0, 12, 25, 0, 36, 4, 0, 0, 0, 60, 0, 0, 0, 13, 0, 0, 0, 12, 0, 0, 0, 4, 9, 0, 0, 28, 49, 25, 0, 4, 0, 36, 0, 12, 0, 0, 0, 4, 0, 0, 9, 124, 0, 0, 0, 4, 0, 0, 0, 21, 0, 0, 25, 4, 0, 0, 0, 28, 117, 0, 0, 4, 0, 0, 0, 12, 0, 9, 0, 4, 0, 0, 0, 60, 0, 49, 9, 29
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 20 2017

Keywords

Examples

			a(8) = 12 because 12 has 6 divisors {1, 2, 3, 4, 6, 12} among which 2 are proper prime powers {4, 8} therefore 4 + 8 = 12.
		

Crossrefs

Programs

  • Maple
    f:= n -> add(t[1]*(t[1]^t[2]-t[1])/(t[1]-1), t=ifactors(n)[2]):
    map(f, [$1..100]); # Robert Israel, Mar 31 2017
  • Mathematica
    nmax = 100; Rest[CoefficientList[Series[Sum[Boole[PrimePowerQ[k] && PrimeOmega[k] > 1] k x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    Table[Total[Select[Divisors[n], PrimePowerQ[#1] && PrimeOmega[#1] > 1 &]], {n, 100}]
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - p - 1; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jul 24 2024 *)
  • PARI
    concat([0, 0, 0], Vec(sum(k=1, 100, (isprimepower(k) && bigomega(k)>1) * k * x^k/(1 - x^k)) + O(x^101))) \\ Indranil Ghosh, Mar 21 2017
    
  • PARI
    a(n) = sumdiv(n, d, d*(isprimepower(d) && !isprime(d))); \\ Michel Marcus, Apr 01 2017

Formula

G.f.: Sum_{p prime, k>=2} p^k*x^(p^k)/(1 - x^(p^k)).
a(n) = Sum_{d|n, d = p^k, p prime, k >= 2} d.
a(n) = 0 if n is a squarefree (A005117).
Additive with a(p^e) = (p^(e+1)-1)/(p-1) - p - 1. - Amiram Eldar, Jul 24 2024

A286875 If n = Product (p_j^k_j) then a(n) = Sum (k_j >= 2, p_j^k_j).

Original entry on oeis.org

0, 0, 0, 4, 0, 0, 0, 8, 9, 0, 0, 4, 0, 0, 0, 16, 0, 9, 0, 4, 0, 0, 0, 8, 25, 0, 27, 4, 0, 0, 0, 32, 0, 0, 0, 13, 0, 0, 0, 8, 0, 0, 0, 4, 9, 0, 0, 16, 49, 25, 0, 4, 0, 27, 0, 8, 0, 0, 0, 4, 0, 0, 9, 64, 0, 0, 0, 4, 0, 0, 0, 17, 0, 0, 25, 4, 0, 0, 0, 16, 81, 0, 0, 4, 0, 0, 0, 8, 0, 9, 0, 4, 0, 0, 0, 32, 0, 49, 9, 29, 0, 0, 0, 8, 0, 0, 0, 31
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 02 2017

Keywords

Comments

Sum of unitary, proper prime power divisors of n.

Examples

			a(360) = a(2^3*3^2*5) = 2^3 + 3^2 = 17.
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, # &, CoprimeQ[#, n/#] && PrimePowerQ[#] && !PrimeQ[#] &], {n, 108}]
    f[p_, e_] := If[e == 1, 0, p^e]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jul 24 2024 *)
  • PARI
    A286875(n) = { my(f=factor(n)); for (i=1, #f~, if(f[i, 2] < 2, f[i, 1] = 0)); vecsum(vector(#f~,i,f[i,1]^f[i,2])); }; \\ Antti Karttunen, Oct 07 2017
  • Python
    from sympy import primefactors, isprime, gcd, divisors
    def a(n): return sum(d for d in divisors(n) if gcd(d, n//d)==1 and len(primefactors(d))==1 and not isprime(d))
    print([a(n) for n in range(1, 109)]) # Indranil Ghosh, Aug 02 2017
    

Formula

a(n) = Sum_{d|n, d = p^k, p prime, k >= 2, gcd(d, n/d) = 1} d.
a(A246547(k)) = A246547(k).
a(A005117(k)) = 0.
Additive with a(p^e) = p^e if e >= 2, and 0 otherwise. - Amiram Eldar, Jul 24 2024

A367502 Sum of the final digits of the prime power divisors (p^k, k>=0) of n.

Original entry on oeis.org

1, 3, 4, 7, 6, 6, 8, 15, 13, 8, 2, 10, 4, 10, 9, 21, 8, 15, 10, 12, 11, 4, 4, 18, 11, 6, 20, 14, 10, 11, 2, 23, 5, 10, 13, 19, 8, 12, 7, 20, 2, 13, 4, 8, 18, 6, 8, 24, 17, 13, 11, 10, 4, 22, 7, 22, 13, 12, 10, 15, 2, 4, 20, 27, 9, 7, 8, 14, 7, 15, 2, 27, 4, 10, 14, 16, 9, 9, 10, 26, 21, 4, 4
Offset: 1

Views

Author

Wesley Ivan Hurt, Nov 20 2023

Keywords

Examples

			a(16) = 21 since the prime power divisors of 16 are {1, 2, 4, 8, 16} and the sum of their final digits is 1 + 2 + 4 + 8 + 6 = 21.
		

Crossrefs

Cf. A000961 (Powers of primes), A001221 (omega), A010879 (Final digit of n), A023888 (Sum of the prime power divisors of n including 1), A371885 (first k with a(k) = n).

Programs

  • Maple
    f:= proc(n) local F,i,j,t;
      F:= ifactors(n)[2];
      1 + add(add(F[i,1]^j mod 10, j = 1 .. F[i,2]),i=1..nops(F))
    end proc:
    map(f, [$1..100]); # Robert Israel, Apr 10 2024
  • Mathematica
    Table[1 + Sum[Floor[1/PrimeNu[k]] Mod[k, 10] (1 - Ceiling[n/k] + Floor[n/k]), {k, 2, n}], {n, 100}]
  • PARI
    a(n) = my(f=factor(n)); 1 + sum(k=1, #f~, sum(j=1, f[k,2], lift(Mod(f[k,1], 10)^j))); \\ Michel Marcus, Nov 22 2023

Formula

a(n) = 1 + Sum_{d|n, d>1} floor(1/omega(d)) * (d mod 10).

A284233 Sum of odd prime power divisors of n (not including 1).

Original entry on oeis.org

0, 0, 3, 0, 5, 3, 7, 0, 12, 5, 11, 3, 13, 7, 8, 0, 17, 12, 19, 5, 10, 11, 23, 3, 30, 13, 39, 7, 29, 8, 31, 0, 14, 17, 12, 12, 37, 19, 16, 5, 41, 10, 43, 11, 17, 23, 47, 3, 56, 30, 20, 13, 53, 39, 16, 7, 22, 29, 59, 8, 61, 31, 19, 0, 18, 14, 67, 17, 26, 12, 71, 12, 73, 37, 33, 19, 18, 16, 79, 5
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 23 2017

Keywords

Examples

			a(15) = 8 because 15 has 4 divisors {1, 3, 5, 15} among which 2 are odd prime powers {3, 5} therefore 3 + 5 = 8.
		

Crossrefs

Cf. A000961, A005069, A023888, A023889, A038712, A061345, A065091 (fixed points), A087436 (number of odd prime power divisors of n), A206787, A246655, A284117.

Programs

  • Mathematica
    nmax = 80; Rest[CoefficientList[Series[Sum[Boole[PrimePowerQ[k] && Mod[k, 2] == 1] k x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    Table[Total[Select[Divisors[n], PrimePowerQ[#] && Mod[#, 2] == 1 &]], {n, 80}]
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; f[2, e_] := 0; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jul 24 2024 *)

Formula

G.f.: Sum_{k>=1} A061345(k)*x^A061345(k)/(1 - x^A061345(k)).
a(n) = Sum_{d|n, d = p^k, p prime, p > 2, k > 0} d.
a(p^k) = p*(p^k - 1)/(p - 1) for p is a prime > 2.
a(2^k*p) = p for p is a prime > 2.
a(2^k) = 0.
Additive with a(2^e) = 0, and a(p^e) = (p^(e+1)-1)/(p-1) - 1 for an odd prime p. - Amiram Eldar, Jul 24 2024
Showing 1-10 of 10 results.