cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A023888 Sum of prime power divisors of n (1 included).

Original entry on oeis.org

1, 3, 4, 7, 6, 6, 8, 15, 13, 8, 12, 10, 14, 10, 9, 31, 18, 15, 20, 12, 11, 14, 24, 18, 31, 16, 40, 14, 30, 11, 32, 63, 15, 20, 13, 19, 38, 22, 17, 20, 42, 13, 44, 18, 18, 26, 48, 34, 57, 33, 21, 20, 54, 42, 17, 22, 23, 32, 60, 15, 62, 34, 20, 127, 19, 17, 68, 24, 27
Offset: 1

Views

Author

Keywords

Comments

Sum of n-th row of triangle A210208. [Reinhard Zumkeller, Mar 18 2012]

Examples

			For n = 12, set of such divisors is {1, 2, 3, 4}; a(12) = 1+2+3+4 = 10. From
		

Crossrefs

Programs

  • Haskell
    a023888 = sum . a210208_row  -- Reinhard Zumkeller, Mar 18 2012
    
  • Maple
    f:= n -> 1 + add((t[1]^(t[2]+1)-t[1])/(t[1]-1),t=ifactors(n)[2]):
    map(f, [$1..100]); # Robert Israel, Jan 04 2017
  • Mathematica
    Array[ Plus @@ (Select[ Divisors[ # ], (Length[ FactorInteger[ # ] ]<=1)& ])&, 70 ]
  • PARI
    for(n=1,100, s=1; fordiv(n,d, if((ispower(d,,&z)&&isprime(z)) || isprime(d),s+=d)); print1(s,", "))
    
  • PARI
    a(n) = {
      my(f = factor(n), fsz = matsize(f)[1]);
      1 + sum(k = 1, fsz, f[k,1]*(f[k,1]^f[k,2] - 1)\(f[k,1]-1));
    };
    vector(100, n, a(n))  \\ Gheorghe Coserea, Jan 04 2017

Formula

a(n) = A000203(n) - A035321(n) = A023889(n) + 1.
a(1) = 1, a(p) = p+1, a(pq) = p+q+1, a(pq...z) = (p+q+...+z) + 1, a(p^k) = (p^(k+1)-1) / (p-1), for p, q = primes, k = natural numbers, pq...z = product of k (k > 2) distinct primes p, q, ..., z.
G.f.: x/(1 - x) + Sum_{k>=2} floor(1/omega(k))*k*x^k/(1 - x^k), where omega(k) is the number of distinct prime factors (A001221). - Ilya Gutkovskiy, Jan 04 2017

A333753 Sum of prime power divisors of n that are <= sqrt(n).

Original entry on oeis.org

0, 0, 0, 2, 0, 2, 0, 2, 3, 2, 0, 5, 0, 2, 3, 6, 0, 5, 0, 6, 3, 2, 0, 9, 5, 2, 3, 6, 0, 10, 0, 6, 3, 2, 5, 9, 0, 2, 3, 11, 0, 5, 0, 6, 8, 2, 0, 9, 7, 7, 3, 6, 0, 5, 5, 13, 3, 2, 0, 14, 0, 2, 10, 14, 5, 5, 0, 6, 3, 14, 0, 17, 0, 2, 8, 6, 7, 5, 0, 19, 12, 2, 0, 16, 5, 2, 3, 14, 0, 19
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 03 2020

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local F,i,j,t;
      F:= ifactors(n)[2];
      t:= 0;
      for i from 1 to nops(F) do
        j:= min(F[i,2],ilog[F[i,1]^2](n));
        t:= t + (F[i,1]^j-1)*F[i,1]/(F[i,1]-1)
      od;
      t
    end proc:
    map(f, [$1..100]); # Robert Israel, Feb 15 2023
  • Mathematica
    Table[DivisorSum[n, # &, # <= Sqrt[n] && PrimePowerQ[#] &], {n, 1, 90}]
    nmax = 90; CoefficientList[Series[Sum[Boole[PrimePowerQ[k]] k x^(k^2)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sumdiv(n, d, if ((d^2<=n) && isprimepower(d), d)); \\ Michel Marcus, Apr 03 2020

Formula

G.f.: Sum_{p prime, k>=1} p^k * x^(p^(2*k)) / (1 - x^(p^k)).

A284117 Sum of proper prime power divisors of n.

Original entry on oeis.org

0, 0, 0, 4, 0, 0, 0, 12, 9, 0, 0, 4, 0, 0, 0, 28, 0, 9, 0, 4, 0, 0, 0, 12, 25, 0, 36, 4, 0, 0, 0, 60, 0, 0, 0, 13, 0, 0, 0, 12, 0, 0, 0, 4, 9, 0, 0, 28, 49, 25, 0, 4, 0, 36, 0, 12, 0, 0, 0, 4, 0, 0, 9, 124, 0, 0, 0, 4, 0, 0, 0, 21, 0, 0, 25, 4, 0, 0, 0, 28, 117, 0, 0, 4, 0, 0, 0, 12, 0, 9, 0, 4, 0, 0, 0, 60, 0, 49, 9, 29
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 20 2017

Keywords

Examples

			a(8) = 12 because 12 has 6 divisors {1, 2, 3, 4, 6, 12} among which 2 are proper prime powers {4, 8} therefore 4 + 8 = 12.
		

Crossrefs

Programs

  • Maple
    f:= n -> add(t[1]*(t[1]^t[2]-t[1])/(t[1]-1), t=ifactors(n)[2]):
    map(f, [$1..100]); # Robert Israel, Mar 31 2017
  • Mathematica
    nmax = 100; Rest[CoefficientList[Series[Sum[Boole[PrimePowerQ[k] && PrimeOmega[k] > 1] k x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    Table[Total[Select[Divisors[n], PrimePowerQ[#1] && PrimeOmega[#1] > 1 &]], {n, 100}]
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - p - 1; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jul 24 2024 *)
  • PARI
    concat([0, 0, 0], Vec(sum(k=1, 100, (isprimepower(k) && bigomega(k)>1) * k * x^k/(1 - x^k)) + O(x^101))) \\ Indranil Ghosh, Mar 21 2017
    
  • PARI
    a(n) = sumdiv(n, d, d*(isprimepower(d) && !isprime(d))); \\ Michel Marcus, Apr 01 2017

Formula

G.f.: Sum_{p prime, k>=2} p^k*x^(p^k)/(1 - x^(p^k)).
a(n) = Sum_{d|n, d = p^k, p prime, k >= 2} d.
a(n) = 0 if n is a squarefree (A005117).
Additive with a(p^e) = (p^(e+1)-1)/(p-1) - p - 1. - Amiram Eldar, Jul 24 2024

A178637 a(n) = sum of divisors d of n such that d is not equal to p^k where p = prime, k >=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 7, 1, 1, 1, 11, 1, 19, 1, 15, 16, 1, 1, 25, 1, 31, 22, 23, 1, 43, 1, 27, 1, 43, 1, 62, 1, 1, 34, 35, 36, 73, 1, 39, 40, 71, 1, 84, 1, 67, 61, 47, 1, 91, 1, 61, 52, 79, 1, 79, 56, 99, 58, 59, 1, 154, 1, 63, 85, 1, 66, 128, 1, 103, 70, 130, 1, 169, 1, 75, 91, 115, 78, 150, 1, 151, 1, 83, 1, 208, 86, 87, 88, 155, 1, 215, 92, 139, 94, 95, 96, 187, 1, 113, 133, 181
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2010

Keywords

Examples

			For n = 12, set of such divisors is {1, 6, 12}; a(12) = 1+6+12 = 19.
		

Crossrefs

One more than A035321.
Cf. A000203, A001221 (omega), A023889, A035321.

Programs

  • Mathematica
    Array[Plus @@ (Select[Divisors[#], (Length[FactorInteger[#]] > 1) &]) &, 100] + 1 (* Robert P. P. McKone, Jan 28 2021 *)
  • PARI
    A178637(n) = sumdiv(n,d,(omega(d)!=1)*(d)); \\ Antti Karttunen, Aug 06 2018

Formula

a(n) = A000203(n) - A023889(n) = A035321(n) + 1.
a(1) = 1, a(p) = 1, a(pq) = pq+1, a(pq...z) = [(p+1)*(q+1)*…*(z+1)] - (p+q+...+z), a(p^k) = 1, for p, q = primes, k = natural numbers, pq...z = product of k (k > 2) distinct primes p, q, ..., z.
a(n) = Sum_{d|n} d * (1 - [omega(n) = 1]), where omega is the number of distinct prime factors (A001221) and [ ] is the Iverson bracket. - Wesley Ivan Hurt, Jan 28 2021

A281782 Numbers n such that sum of prime power divisors of n > sum of prime power divisors of m for all m < n.

Original entry on oeis.org

2, 3, 4, 7, 8, 16, 27, 32, 64, 121, 125, 128, 243, 256, 512, 729, 1024, 2048, 4096, 6561, 8192, 15625, 16384, 32761, 32768, 59049, 65536, 117649, 130321, 131072, 177147, 262144, 524287, 524288, 1048576, 1594323, 1953125, 2097152, 4194304, 8388608
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 14 2017

Keywords

Comments

Numbers n such that A023889(n) > A023889(m) for all m < n.
Numbers n such that Sum_{p^k|n, p prime, k>=1} p^k > Sum_{p^k|m, p prime, k>=1} p^k for all m < n.

Crossrefs

Programs

  • Mathematica
    mx = 0; t = {}; Do[u = DivisorSum[n, # &, PrimePowerQ[#] &]; If[u > mx, mx = u; AppendTo[t, n]], {n, 8500000}]; t

A286875 If n = Product (p_j^k_j) then a(n) = Sum (k_j >= 2, p_j^k_j).

Original entry on oeis.org

0, 0, 0, 4, 0, 0, 0, 8, 9, 0, 0, 4, 0, 0, 0, 16, 0, 9, 0, 4, 0, 0, 0, 8, 25, 0, 27, 4, 0, 0, 0, 32, 0, 0, 0, 13, 0, 0, 0, 8, 0, 0, 0, 4, 9, 0, 0, 16, 49, 25, 0, 4, 0, 27, 0, 8, 0, 0, 0, 4, 0, 0, 9, 64, 0, 0, 0, 4, 0, 0, 0, 17, 0, 0, 25, 4, 0, 0, 0, 16, 81, 0, 0, 4, 0, 0, 0, 8, 0, 9, 0, 4, 0, 0, 0, 32, 0, 49, 9, 29, 0, 0, 0, 8, 0, 0, 0, 31
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 02 2017

Keywords

Comments

Sum of unitary, proper prime power divisors of n.

Examples

			a(360) = a(2^3*3^2*5) = 2^3 + 3^2 = 17.
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, # &, CoprimeQ[#, n/#] && PrimePowerQ[#] && !PrimeQ[#] &], {n, 108}]
    f[p_, e_] := If[e == 1, 0, p^e]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jul 24 2024 *)
  • PARI
    A286875(n) = { my(f=factor(n)); for (i=1, #f~, if(f[i, 2] < 2, f[i, 1] = 0)); vecsum(vector(#f~,i,f[i,1]^f[i,2])); }; \\ Antti Karttunen, Oct 07 2017
  • Python
    from sympy import primefactors, isprime, gcd, divisors
    def a(n): return sum(d for d in divisors(n) if gcd(d, n//d)==1 and len(primefactors(d))==1 and not isprime(d))
    print([a(n) for n in range(1, 109)]) # Indranil Ghosh, Aug 02 2017
    

Formula

a(n) = Sum_{d|n, d = p^k, p prime, k >= 2, gcd(d, n/d) = 1} d.
a(A246547(k)) = A246547(k).
a(A005117(k)) = 0.
Additive with a(p^e) = p^e if e >= 2, and 0 otherwise. - Amiram Eldar, Jul 24 2024

A284233 Sum of odd prime power divisors of n (not including 1).

Original entry on oeis.org

0, 0, 3, 0, 5, 3, 7, 0, 12, 5, 11, 3, 13, 7, 8, 0, 17, 12, 19, 5, 10, 11, 23, 3, 30, 13, 39, 7, 29, 8, 31, 0, 14, 17, 12, 12, 37, 19, 16, 5, 41, 10, 43, 11, 17, 23, 47, 3, 56, 30, 20, 13, 53, 39, 16, 7, 22, 29, 59, 8, 61, 31, 19, 0, 18, 14, 67, 17, 26, 12, 71, 12, 73, 37, 33, 19, 18, 16, 79, 5
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 23 2017

Keywords

Examples

			a(15) = 8 because 15 has 4 divisors {1, 3, 5, 15} among which 2 are odd prime powers {3, 5} therefore 3 + 5 = 8.
		

Crossrefs

Cf. A000961, A005069, A023888, A023889, A038712, A061345, A065091 (fixed points), A087436 (number of odd prime power divisors of n), A206787, A246655, A284117.

Programs

  • Mathematica
    nmax = 80; Rest[CoefficientList[Series[Sum[Boole[PrimePowerQ[k] && Mod[k, 2] == 1] k x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    Table[Total[Select[Divisors[n], PrimePowerQ[#] && Mod[#, 2] == 1 &]], {n, 80}]
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; f[2, e_] := 0; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jul 24 2024 *)

Formula

G.f.: Sum_{k>=1} A061345(k)*x^A061345(k)/(1 - x^A061345(k)).
a(n) = Sum_{d|n, d = p^k, p prime, p > 2, k > 0} d.
a(p^k) = p*(p^k - 1)/(p - 1) for p is a prime > 2.
a(2^k*p) = p for p is a prime > 2.
a(2^k) = 0.
Additive with a(2^e) = 0, and a(p^e) = (p^(e+1)-1)/(p-1) - 1 for an odd prime p. - Amiram Eldar, Jul 24 2024

A286972 Numbers k such that the average of the prime power divisors (not including 1) of k is an integer.

Original entry on oeis.org

2, 3, 4, 5, 7, 9, 11, 12, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 42, 43, 47, 49, 51, 53, 55, 57, 59, 61, 64, 65, 67, 69, 71, 73, 75, 77, 78, 79, 80, 81, 83, 84, 85, 87, 89, 91, 93, 95, 97, 100, 101, 103, 105, 107, 108, 109, 110, 111, 113, 114, 115, 119, 121, 123, 127, 129, 131, 132, 133, 135, 137, 139
Offset: 1

Views

Author

Ilya Gutkovskiy, May 17 2017

Keywords

Comments

Numbers k such that A001222(k)|A023889(k).

Examples

			12 is in the sequence because 12 has 6 divisors {1, 2, 3, 4, 6, 12} among which 3 are prime powers {2, 3, 4} and (2 + 3 + 4)/3 = 3 is an integer.
		

Crossrefs

Programs

  • Mathematica
    fQ[n_] := IntegerQ@Mean@Select[Divisors@n, PrimePowerQ]; Select[Range@140, fQ]
  • PARI
    isok(m) = my(vd = select(isprimepower, divisors(m))); #vd && !(vecsum(vd) % #vd); \\ Michel Marcus, Apr 28 2020

A351395 Sum of the divisors of n that are either squarefree, prime powers, or both.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 16, 14, 24, 24, 31, 18, 21, 20, 22, 32, 36, 24, 24, 31, 42, 40, 28, 30, 72, 32, 63, 48, 54, 48, 25, 38, 60, 56, 30, 42, 96, 44, 40, 33, 72, 48, 40, 57, 43, 72, 46, 54, 48, 72, 36, 80, 90, 60, 76, 62, 96, 41, 127, 84, 144, 68, 58, 96, 144, 72
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 09 2022

Keywords

Examples

			a(36) = 25; 36 has 4 squarefree divisors 1,2,3,6 (where the primes 2 and 3 are both squarefree and 1st powers of primes) and 2 (additional) divisors that are powers of primes, 2^2 and 3^2. The sum of the divisors is then 1+2+3+4+6+9 = 25.
		

Crossrefs

Sums of divisors: A048250 (squarefree), A023889 (prime powers), A008472 (prime).

Programs

  • Mathematica
    Array[DivisorSum[#, #*Sign[MoebiusMu[#]^2 + Boole[PrimeNu[#] == 1]] &] &, 71] (* Michael De Vlieger, Feb 10 2022 *)
  • PARI
    a(n) = sumdiv(n, d, if (issquarefree(d) || isprimepower(d), d)); \\ Michel Marcus, Feb 10 2022

Formula

a(n) = Sum_{d|n} d * sign(mu(d)^2 + [omega(d) = 1]).

A281906 Expansion of Sum_{p prime, i>=1} p^i*x^(p^i)/(1 - x^(p^i)) / Product_{j>=1} (1 - x^j).

Original entry on oeis.org

0, 2, 5, 13, 23, 41, 69, 119, 185, 283, 425, 625, 903, 1285, 1799, 2517, 3450, 4699, 6340, 8490, 11264, 14870, 19485, 25390, 32897, 42395, 54372, 69408, 88210, 111612, 140717, 176738, 221135, 275776, 342790, 424743, 524765, 646420, 794109, 972967, 1189105, 1449577, 1763097, 2139394, 2590349, 3129633, 3773546, 4540645
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 01 2017

Keywords

Comments

Total sum of prime power parts (1 excluded) in all partitions of n.
Convolution of the sequences A000041 and A023889.

Examples

			a(5) = 23 because we have [5], [4, 1], [3, 2], [3, 1, 1], [2, 2, 1], [2, 1, 1, 1], [1, 1, 1, 1, 1] and 5 + 4 + 3 + 2 + 3 + 2 + 2 + 2 = 23.
		

Crossrefs

Programs

  • Mathematica
    nmax = 48; Rest[CoefficientList[Series[Sum[Floor[1/PrimeNu[i]] i x^i/(1 - x^i), {i, 2, nmax}]/Product[1 - x^j, {j, 1, nmax}], {x, 0, nmax}], x]]

Formula

G.f.: Sum_{p prime, i>=1} p^i*x^(p^i)/(1 - x^(p^i)) / Product_{j>=1} (1 - x^j).
Showing 1-10 of 10 results.