cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008481 If n = Product (p_j^k_j) then a(n) = Sum partition(k_j).

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 5, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 3, 1, 7, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 6, 2, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 4, 1, 2, 3, 11, 2, 3, 1, 3, 2, 3, 1, 5, 1, 2, 3, 3, 2, 3, 1, 6, 5, 2, 1, 4, 2, 2, 2
Offset: 1

Views

Author

Keywords

Comments

a(n) is a function of the prime signature of n (cf. A025487). - Matthew Vandermast, Jun 24 2012

Crossrefs

Differs from A318473 for the first time at n=32, where a(32)=7, while A318473(32)=8.

Programs

  • Maple
    a:= n-> add(combinat[numbpart](i[2]), i=ifactors(n)[2]):
    seq(a(n), n=1..100);  # Alois P. Heinz, Aug 30 2018
  • Mathematica
    Prepend[ Array[ Plus @@ (PartitionsP /@ Last[ Transpose[ FactorInteger[ # ] ] ])&, 100, 2 ], 0 ]
    (* Second program: *)
    Array[Total[PartitionsP /@ FactorInteger[#][[All, -1]] - Boole[# == 1]] &, 87] (* Michael De Vlieger, Sep 02 2018 *)
  • PARI
    A008481(n) = vecsum(apply(e -> numbpart(e),factor(n)[,2])); \\ Antti Karttunen, Aug 30 2018

Formula

From Antti Karttunen, Aug 30 2018: (Start)
Additive with a(p^e) = A000041(e).
a(n) = A007814(A318312(n)). (End)
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761) and C = Sum_{p prime} f(1/p) = 1.03089282973521424158..., where f(x) = -1 + (1-x) * Product_{k>=1} (1 + x^k)/(1 - x^(2*k)). - Amiram Eldar, Sep 29 2023

Extensions

Term a(1) corrected from 1 to 0 (for an empty sum) by Antti Karttunen, Aug 30 2018