A318473 Additive with a(p^e) = A000045(e+1).
0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 5, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 3, 1, 8, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 6, 2, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 4, 1, 2, 3, 13, 2, 3, 1, 3, 2, 3, 1, 5, 1, 2, 3, 3, 2, 3, 1, 6, 5, 2, 1, 4, 2, 2, 2, 4, 1, 4, 2, 3, 2, 2, 2, 9, 1, 3, 3, 4, 1, 3, 1, 4, 3
Offset: 1
Links
Crossrefs
Programs
-
Mathematica
a[n_] := Total@ Fibonacci[FactorInteger[n][[;; , 2]] + 1]; a[1] = 0; Array[a, 100] (* Amiram Eldar, May 15 2023 *)
-
PARI
A318473(n) = vecsum(apply(e -> fibonacci(1+e),factor(n)[,2]));
Formula
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761) and C = Sum_{k>=2} Fibonacci(k-1) * P(k) = 1.30985781707683753402..., where P(s) is the prime zeta function. - Amiram Eldar, Oct 09 2023
Comments