A008501 7-dimensional centered tetrahedral numbers.
1, 9, 45, 165, 495, 1287, 3003, 6435, 12869, 24301, 43713, 75417, 125475, 202203, 316767, 483879, 722601, 1057265, 1518517, 2144493, 2982135, 4088655, 5533155, 7398411, 9782829, 12802581, 16593929
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Milan Janjic, Two Enumerative Functions
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
Programs
-
GAP
B:=Binomial;; List([0..30], n-> B(n+8,8)-B(n,8) ); # G. C. Greubel, Nov 09 2019
-
Magma
[((2*n+1)*(n^6+3*n^5 +100*n^4 +195*n^3 +1159*n^2 +1062*n +1260)/1260) : n in [0..30]]; // Vincenzo Librandi, Oct 08 2011
-
Maple
seq(binomial(n+8,8) - binomial(n,8), n=0..30); # G. C. Greubel, Nov 09 2019
-
Mathematica
Table[Binomial[n + 8, 8] - Binomial[n, 8], {n, 0, 26}] (* Bruno Berselli, Mar 22 2012 *)
-
PARI
vector(31, n, b=binomial; b(n+7,8) - b(n-1,8) ) \\ G. C. Greubel, Nov 09 2019
-
Sage
b=binomial; [b(n+8,8) - b(n,8) for n in (0..30)] # G. C. Greubel, Nov 09 2019
Formula
G.f.: (1-x^8)/(1-x)^9 = (1+x)*(1+x^2)*(1+x^4)/(1-x)^8.
1260*a(n) = (2*n+1)*(n^6 + 3*n^5 + 100*n^4 + 195*n^3 + 1159*n^2 + 1062*n + 1260). - R. J. Mathar, Mar 14 2011
Comments