cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A054263 Number of palindromic triangular numbers with n digits.

Original entry on oeis.org

3, 2, 3, 3, 2, 2, 6, 2, 1, 4, 7, 0, 4, 4, 12, 5, 6, 2, 3, 2, 6, 3, 6, 2, 2, 4, 3, 2, 5, 0, 3, 2, 1, 4, 3, 1, 10, 1, 4, 0
Offset: 1

Views

Author

Patrick De Geest, Apr 15 2000

Keywords

Examples

			a(10) = 4: 1264114621, 1634004361, 5289009825, 6172882716.
		

Crossrefs

A050721 Primes arising in A083571.

Original entry on oeis.org

2, 3, 11, 109, 173, 5513600773
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1999

Keywords

Comments

Prime indices of palindromic triangular numbers.

Crossrefs

A050722 Palindromic triangular numbers arising from A050721 and A083571.

Original entry on oeis.org

3, 6, 66, 5995, 15051, 15199896744769899151
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1999

Keywords

Crossrefs

A068641 Smallest n-digit palindromic triangular number, or 0 if no such number exists.

Original entry on oeis.org

1, 55, 171, 3003, 15051, 617716, 1269621, 35133153, 178727871, 1264114621, 13953435931, 0, 1313207023131, 19895044059891, 114401848104411, 1250444114440521, 11121736463712111, 357961407704169753
Offset: 1

Views

Author

Amarnath Murthy, Feb 28 2002

Keywords

Examples

			a(4) = 3003 = 77*78/2 is the smallest 4-digit palindromic triangular number.
a(12) = 0 as no 12-digit palindromic triangular number exists.
		

Crossrefs

Extensions

Edited by Patrick De Geest, Mar 24 2002

A068642 Index of the smallest n-digit palindromic triangular number, or 0 if no such number exists.

Original entry on oeis.org

1, 10, 18, 77, 173, 1111, 1593, 8382, 18906, 50281, 167053, 0, 1620621, 6307938, 15126258, 50008881, 149142458, 846122222, 2480116437, 5513600773, 14667896198, 49786655918, 246644446642, 529670494286, 2466444446642
Offset: 1

Views

Author

Amarnath Murthy, Feb 28 2002

Keywords

Examples

			a(4) = 77 as 77*78/2 = 3003 is the smallest 4-digit palindromic triangular number.
a(12) = 0 as no 12-digit palindromic triangular number exists.
		

Crossrefs

Extensions

Edited by Patrick De Geest, Mar 24 2002

A068643 Largest n-digit palindromic triangular number, or 0 if no such number exists.

Original entry on oeis.org

6, 66, 666, 8778, 66066, 828828, 6295926, 61477416, 178727871, 6172882716, 87350505378, 0, 68742000024786, 82078700787028, 684866959668486, 8208268228628028, 67898244444289876, 514816979979618415
Offset: 1

Views

Author

Amarnath Murthy, Feb 28 2002

Keywords

Examples

			a(4) = 8778 = 132*133/2 is the largest 4-digit palindromic triangular number.
a(12) = 0 as no 12-digit palindromic triangular number exists.
		

Crossrefs

Extensions

Edited by Patrick De Geest, Mar 24 2002

A068644 Index of the largest n-digit palindromic triangular number, or 0 if no such number exists.

Original entry on oeis.org

3, 11, 36, 132, 363, 1287, 3548, 11088, 18906, 111111, 417972, 0, 3707883, 12812392, 37009916, 128127032, 368505751, 1014708805, 3567632391, 11151642876, 36657342048, 104561417190, 417898160427, 1325269593372
Offset: 1

Views

Author

Amarnath Murthy, Feb 28 2002

Keywords

Examples

			a(4) = 132 as 132*133/2 = 8778 is the largest 4-digit palindromic triangular number.
a(12) = 0 as no 12-digit palindromic triangular number exists.
		

Crossrefs

Extensions

Edited by Patrick De Geest, Mar 24 2002

A083571 Numbers k such that A008509(k) is prime.

Original entry on oeis.org

2, 3, 5, 10, 12, 72
Offset: 1

Views

Author

N. J. A. Sloane, Jun 14 2003

Keywords

Crossrefs

Programs

  • Mathematica
    palQ[n_]:=Reverse[x=IntegerDigits[n]]==x; t={}; c=0; Do[If[palQ[n*(n+1)/2],c=c+1; If[PrimeQ[n],AppendTo[t,c]]],{n,10^3}]; t (* Jayanta Basu, May 14 2013 *)
  • PARI
    ispal(n)=n=digits(n); for(i=1, #n\2, if(n[i]!=n[#n+1-i], return(0))); 1
    for(k=1,1e9,if(ispal(k*(k+1)/2),n++;if(isprime(k),print1(n", ")))) \\ Charles R Greathouse IV, May 15 2013

A229236 Palindromic triangular number with palindromic index.

Original entry on oeis.org

1, 3, 6, 66, 3003, 66066, 617716, 3544453, 6172882716, 30416261403, 61728399382716, 66056806460865066, 3549632679762369453, 354963215686512369453, 30416741529792514761403, 35496321045754012369453, 3041674104186814014761403
Offset: 1

Views

Author

Shyam Sunder Gupta, Sep 17 2013

Keywords

Examples

			a(5)=3003 because 3003 is 77th triangular number and 77 is palindrome.
		

Crossrefs

Programs

  • Mathematica
    Select[Table[{n,(n(n+1))/2},{n,10^8}],AllTrue[#,PalindromeQ]&][[;;,2]] (* Harvey P. Dale, Jun 04 2023 *)

Extensions

Previous Mathematica program replaced by Harvey P. Dale, Jun 04 2023

A350989 Numbers k such that both k and the k-th triangular number are binary palindromes.

Original entry on oeis.org

0, 1, 5, 9, 17, 21, 33, 65, 129, 257, 341, 513, 693, 1025, 1365, 1397, 2049, 4097, 8193, 16385, 21845, 32769, 43605, 65537, 87125, 87381, 131073, 262145, 524289, 1048577, 1398101, 2097153, 2796885, 4194305, 5592405, 5594453, 8388609, 16777217, 33554433, 67108865
Offset: 1

Views

Author

Amiram Eldar, Jan 28 2022

Keywords

Comments

This sequence is infinite since 2^k+1 is a term for all k>1.

Examples

			5 is a term since 5 = 101_2 is a binary palindromic number and A000217(5) = 5*(5+1)/2 = 15 = 1111_2 is a triangular number and also a binary palindromic number.
		

Crossrefs

The binary version of A008510.
Intersection of A006995 and A350988.
A000051 \ {3} is a subsequence.

Programs

  • Mathematica
    Select[Range[0, 10^6], And @@ PalindromeQ /@ IntegerDigits[{#, #*(# + 1)/2}, 2] &]
  • PARI
    isok(k) = my(bt=binary(k*(k+1)/2), bk=binary(k)); (bt == Vecrev(bt)) && (bk==Vecrev(bk)); \\ Michel Marcus, Jan 28 2022
    
  • Python
    from itertools import count, islice
    def ispal(s): return s == s[::-1]
    def ok(n): return ispal(bin(n)[2:]) and ispal(bin(n*(n+1)//2)[2:])
    print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Jan 28 2022
Showing 1-10 of 11 results. Next