cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008511 Number of points on surface of 4-dimensional cube.

Original entry on oeis.org

0, 16, 80, 240, 544, 1040, 1776, 2800, 4160, 5904, 8080, 10736, 13920, 17680, 22064, 27120, 32896, 39440, 46800, 55024, 64160, 74256, 85360, 97520, 110784, 125200, 140816, 157680, 175840
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 16*x + 80*x^2 + 240*x^3 + 544*x^4 + 1040*x^5 + 1776*x^6 + 2800*x^7 + ... - _Michael Somos_, Jun 24 2018
		

Crossrefs

Programs

  • GAP
    List([0..30], n-> 8*n*(1+n^2)); # G. C. Greubel, Nov 09 2019
  • Magma
    [(n+1)^4-(n-1)^4: n in [0..30]]; // Vincenzo Librandi, Aug 27 2011
    
  • Maple
    seq(8*n*(1+n^2), n=0..30); # G. C. Greubel, Nov 09 2019
  • Mathematica
    Last[#]-First[#]&/@Partition[Range[-1,30]^4,3,1] (* or *) LinearRecurrence[ {4,-6,4,-1},{0,16,80,240},30] (* Harvey P. Dale, Oct 15 2012 *)
  • PARI
    vector(31, n, 8*(n-1)*(1+(n-1)^2)) \\ G. C. Greubel, Nov 09 2019
    
  • Sage
    [8*n*(1+n^2) for n in (0..30)] # G. C. Greubel, Nov 09 2019
    

Formula

a(n) = (n+1)^4 - (n-1)^4 = 8*n + 8*n^3.
G.f.: 16*x*(1+x+x^2)/(1-4*x+6*x^2-4*x^3+x^4). - Colin Barker, Jan 02 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), a(0)=0, a(1)=16, a(2)=80, a(3)=240. - Harvey P. Dale, Oct 15 2012
a(n) = 16 * A006003(n). - J. M. Bergot, Jul 22 2013
For n > 0, a(n) = A005917(n) + A005917(n+1) = A000583(n+1) - A000583(n-1). - Bruce J. Nicholson, Jun 19 2018
a(n) = -a(-n) for all n in Z. - Michael Somos, Jun 24 2018
E.g.f.: 8*x*(2 +3*x +x^2)*exp(x). - G. C. Greubel, Nov 09 2019