A008511 Number of points on surface of 4-dimensional cube.
0, 16, 80, 240, 544, 1040, 1776, 2800, 4160, 5904, 8080, 10736, 13920, 17680, 22064, 27120, 32896, 39440, 46800, 55024, 64160, 74256, 85360, 97520, 110784, 125200, 140816, 157680, 175840
Offset: 0
Examples
G.f. = 16*x + 80*x^2 + 240*x^3 + 544*x^4 + 1040*x^5 + 1776*x^6 + 2800*x^7 + ... - _Michael Somos_, Jun 24 2018
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
GAP
List([0..30], n-> 8*n*(1+n^2)); # G. C. Greubel, Nov 09 2019
-
Magma
[(n+1)^4-(n-1)^4: n in [0..30]]; // Vincenzo Librandi, Aug 27 2011
-
Maple
seq(8*n*(1+n^2), n=0..30); # G. C. Greubel, Nov 09 2019
-
Mathematica
Last[#]-First[#]&/@Partition[Range[-1,30]^4,3,1] (* or *) LinearRecurrence[ {4,-6,4,-1},{0,16,80,240},30] (* Harvey P. Dale, Oct 15 2012 *)
-
PARI
vector(31, n, 8*(n-1)*(1+(n-1)^2)) \\ G. C. Greubel, Nov 09 2019
-
Sage
[8*n*(1+n^2) for n in (0..30)] # G. C. Greubel, Nov 09 2019
Formula
a(n) = (n+1)^4 - (n-1)^4 = 8*n + 8*n^3.
G.f.: 16*x*(1+x+x^2)/(1-4*x+6*x^2-4*x^3+x^4). - Colin Barker, Jan 02 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), a(0)=0, a(1)=16, a(2)=80, a(3)=240. - Harvey P. Dale, Oct 15 2012
a(n) = 16 * A006003(n). - J. M. Bergot, Jul 22 2013
For n > 0, a(n) = A005917(n) + A005917(n+1) = A000583(n+1) - A000583(n-1). - Bruce J. Nicholson, Jun 19 2018
a(n) = -a(-n) for all n in Z. - Michael Somos, Jun 24 2018
E.g.f.: 8*x*(2 +3*x +x^2)*exp(x). - G. C. Greubel, Nov 09 2019