cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008512 Number of points on the surface of 5-dimensional cube.

Original entry on oeis.org

2, 32, 242, 992, 2882, 6752, 13682, 24992, 42242, 67232, 102002, 148832, 210242, 288992, 388082, 510752, 660482, 840992, 1056242, 1310432, 1608002, 1953632, 2352242, 2808992, 3329282, 3918752
Offset: 0

Views

Author

Keywords

Programs

  • GAP
    List([0..30], n-> 2*(1 +10*n^2 +5*n^4)); # G. C. Greubel, Nov 09 2019
  • Magma
    [(n+1)^5-(n-1)^5: n in [0..30]]; // Vincenzo Librandi, Aug 27 2011
    
  • Maple
    seq((n+1)^5-(n-1)^5, n=0..30);
  • Mathematica
    Table[10n^2*(n^2+2)+2,{n,0,30}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{2,32,242,992,2882},30] (* Harvey P. Dale, Jul 17 2014 *)
  • PARI
    vector(31, n, n^5-(n-2)^5) \\ G. C. Greubel, Nov 09 2019
    
  • Sage
    [2*(1 +10*n^2 +5*n^4) for n in (0..30)] # G. C. Greubel, Nov 09 2019
    

Formula

a(n) = (n+1)^5 - (n-1)^5.
G.f.: (2 + 22*x + 102*x^2 + 82*x^3 + 32*x^4)/(1 - 5*x + 10*x^2 - 10*x^3 + 5*x^4 - x^5). - Colin Barker, Jan 02 2012
E.g.f.: 2*(1 +15*x +45*x^2 +30*x^3 +5*x^4)*exp(x). - G. C. Greubel, Nov 09 2019
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5). - Wesley Ivan Hurt, May 04 2021