A008515 5-dimensional centered cube numbers.
1, 33, 275, 1267, 4149, 10901, 24583, 49575, 91817, 159049, 261051, 409883, 620125, 909117, 1297199, 1807951, 2468433, 3309425, 4365667, 5676099, 7284101, 9237733, 11589975, 14398967, 17728249, 21647001, 26230283, 31559275, 37721517, 44811149, 52929151, 62183583, 72689825
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Tito Piezas, About a Ramanujan-Sata formula of level 10, a recurrence, and zeta(5)?, Mathoverflow question asked Mar 27 2017.
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Crossrefs
Apart from the first term, a subsequence of A088703.
Programs
-
GAP
List([0..40], n-> n^5+(n+1)^5); # G. C. Greubel, Nov 09 2019
-
Magma
[n^5+(n+1)^5: n in [0..40]]; // Bruno Berselli, Aug 25 2011
-
Maple
seq(n^5+(n+1)^5, n=0..40);
-
Mathematica
Sum[(Range[40]+j-2)^5, {j,2}] (* G. C. Greubel, Nov 09 2019 *)
-
PARI
a(n) = n^5+(n+1)^5;
-
Sage
[n^5+(n+1)^5 for n in (0..40)] # G. C. Greubel, Nov 09 2019
Formula
a(n) = n^5 + (n+1)^5 = 2*n^5 +5*n^4 +10*n^3 +10*n^2 +5*n +1.
From Bruno Berselli, Aug 25 2011: (Start)
G.f.: (1+x)*(1 +26*x +66*x^2 +26*x^3 +x^4)/(1-x)^6.
a(n) = -a(-n-1).
a(n) = 6*a(n-1) -15*a(n-2) +20*a(n-3) -15*a(n-4) +6*a(n-5) -a(n-6). (End)
E.g.f.: (1 +32*x +105*x^2 +90*x^3 +25*x^4 +2*x^5)*exp(x). - G. C. Greubel, Nov 09 2019
Comments