cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008515 5-dimensional centered cube numbers.

Original entry on oeis.org

1, 33, 275, 1267, 4149, 10901, 24583, 49575, 91817, 159049, 261051, 409883, 620125, 909117, 1297199, 1807951, 2468433, 3309425, 4365667, 5676099, 7284101, 9237733, 11589975, 14398967, 17728249, 21647001, 26230283, 31559275, 37721517, 44811149, 52929151, 62183583, 72689825
Offset: 0

Views

Author

Keywords

Comments

These are never prime, as a(n) = (2n+1)*(n^4+2*n^3+4*n^2+3*n+1). - Jonathan Vos Post, Aug 18 2011
zeta(5) = 1 / (a(1) - 1^10 / (a(2) - 2^10 / (a(3) - 3^10 / ... ))) [From Tito Piezas III mathoverflow question 265688 comment]. - Michael Somos, Jul 06 2017

Crossrefs

Apart from the first term, a subsequence of A088703.

Programs

  • GAP
    List([0..40], n-> n^5+(n+1)^5); # G. C. Greubel, Nov 09 2019
  • Magma
    [n^5+(n+1)^5: n in [0..40]]; // Bruno Berselli, Aug 25 2011
    
  • Maple
    seq(n^5+(n+1)^5, n=0..40);
  • Mathematica
    Sum[(Range[40]+j-2)^5, {j,2}] (* G. C. Greubel, Nov 09 2019 *)
  • PARI
    a(n) = n^5+(n+1)^5;
    
  • Sage
    [n^5+(n+1)^5 for n in (0..40)] # G. C. Greubel, Nov 09 2019
    

Formula

a(n) = n^5 + (n+1)^5 = 2*n^5 +5*n^4 +10*n^3 +10*n^2 +5*n +1.
From Bruno Berselli, Aug 25 2011: (Start)
G.f.: (1+x)*(1 +26*x +66*x^2 +26*x^3 +x^4)/(1-x)^6.
a(n) = -a(-n-1).
a(n) = 6*a(n-1) -15*a(n-2) +20*a(n-3) -15*a(n-4) +6*a(n-5) -a(n-6). (End)
E.g.f.: (1 +32*x +105*x^2 +90*x^3 +25*x^4 +2*x^5)*exp(x). - G. C. Greubel, Nov 09 2019