A008516 6-dimensional centered cube numbers.
1, 65, 793, 4825, 19721, 62281, 164305, 379793, 793585, 1531441, 2771561, 4757545, 7812793, 12356345, 18920161, 28167841, 40914785, 58149793, 81058105, 111045881, 149766121, 199146025, 261415793, 339138865, 435243601, 553056401, 696336265, 869310793, 1076713625, 1323823321
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Programs
-
GAP
List([0..35], n-> n^6+(n+1)^6); # G. C. Greubel, Nov 09 2019
-
Magma
[(n+1)^6+n^6: n in [0..35]]; // Vincenzo Librandi, Aug 27 2011
-
Maple
seq(n^6+(n+1)^6, n=0..35);
-
Mathematica
Table[n^6 + (n+1)^6, {n,0,35}] (* Alonso del Arte, Aug 17 2011 *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{1,65,793,4825,19721,62281,164305},30] (* Harvey P. Dale, Jun 19 2021 *)
-
PARI
vector(36, n, n^6+(n-1)^6) \\ G. C. Greubel, Nov 09 2019
-
Sage
[n^6+(n+1)^6 for n in (0..35)] # G. C. Greubel, Nov 09 2019
Formula
From Colin Barker, Jul 09 2012: (Start)
G.f.: (1 + 58*x + 359*x^2 + 604*x^3 + 359*x^4 + 58*x^5 + x^6)/(1-x)^7.
a(n) = 1 + 6*n + 15*n^2 + 20*n^3 + 15*n^4 + 6*n^5 + 2*n^6. (End)
E.g.f.: (1 +64*x +332*x^2 +440*x^3 +205*x^4 +36*x^5 +2*x^6)*exp(x). - G. C. Greubel, Nov 09 2019
Comments