cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008516 6-dimensional centered cube numbers.

Original entry on oeis.org

1, 65, 793, 4825, 19721, 62281, 164305, 379793, 793585, 1531441, 2771561, 4757545, 7812793, 12356345, 18920161, 28167841, 40914785, 58149793, 81058105, 111045881, 149766121, 199146025, 261415793, 339138865, 435243601, 553056401, 696336265, 869310793, 1076713625, 1323823321
Offset: 0

Views

Author

Keywords

Comments

These are never prime, as a(n) = (2*n^2 + 2*n + 1) * (n^4 + 2*n^3 + 5*n^2 + 4*n + 1). - Jonathan Vos Post, Aug 17 2011

Programs

  • GAP
    List([0..35], n-> n^6+(n+1)^6); # G. C. Greubel, Nov 09 2019
  • Magma
    [(n+1)^6+n^6: n in [0..35]]; // Vincenzo Librandi, Aug 27 2011
    
  • Maple
    seq(n^6+(n+1)^6, n=0..35);
  • Mathematica
    Table[n^6 + (n+1)^6, {n,0,35}] (* Alonso del Arte, Aug 17 2011 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{1,65,793,4825,19721,62281,164305},30] (* Harvey P. Dale, Jun 19 2021 *)
  • PARI
    vector(36, n, n^6+(n-1)^6) \\ G. C. Greubel, Nov 09 2019
    
  • Sage
    [n^6+(n+1)^6 for n in (0..35)] # G. C. Greubel, Nov 09 2019
    

Formula

From Colin Barker, Jul 09 2012: (Start)
G.f.: (1 + 58*x + 359*x^2 + 604*x^3 + 359*x^4 + 58*x^5 + x^6)/(1-x)^7.
a(n) = 1 + 6*n + 15*n^2 + 20*n^3 + 15*n^4 + 6*n^5 + 2*n^6. (End)
E.g.f.: (1 +64*x +332*x^2 +440*x^3 +205*x^4 +36*x^5 +2*x^6)*exp(x). - G. C. Greubel, Nov 09 2019