A008528 Coordination sequence for 4-dimensional RR-centered di-isohexagonal orthogonal lattice.
1, 18, 102, 318, 732, 1410, 2418, 3822, 5688, 8082, 11070, 14718, 19092, 24258, 30282, 37230, 45168, 54162, 64278, 75582, 88140, 102018, 117282, 133998, 152232, 172050, 193518, 216702, 241668, 268482, 297210, 327918, 360672, 395538, 432582, 471870, 513468, 557442, 603858, 652782, 704280
Offset: 0
References
- M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908.
- M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908. [Annotated scanned copy]
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
GAP
Concatenation([1], List([1..45], n-> n*(7+11*n^2) )); # G. C. Greubel, Nov 09 2019
-
Magma
I:=[1, 18, 102, 318,732]; [n le 5 select I[n] else 4*Self(n-1) -6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..45]]; // Vincenzo Librandi, Jun 19 2012
-
Maple
1, seq(11*k^3+7*k, k=1..45);
-
Mathematica
CoefficientList[Series[1+6*x*(3+5*x+3*x^2)/(1-x)^4,{x,0,45}],x] (* Vincenzo Librandi, Jun 19 2012 *) LinearRecurrence[{4,-6,4,-1},{1,18,102,318,732},45] (* Harvey P. Dale, Apr 27 2017 *)
-
PARI
vector(46, n, if(n==1,1,(n-1)*(7+11*(n-1)^2)) ) \\ G. C. Greubel, Nov 09 2019
-
Sage
[1]+[n*(7+11*n^2) for n in (1..45)] # G. C. Greubel, Nov 09 2019
Formula
a(n) = n*(11*n^2 + 7) with n>0, with a(0)=1.
G.f.: 1 + 6*x*(3 + 5*x + 3*x^2)/(1-x)^4. - R. J. Mathar, Sep 04 2011
E.g.f.: 1 + x*(18 + 33*x + 11*x^2)*exp(x). - G. C. Greubel, Nov 09 2019