cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008528 Coordination sequence for 4-dimensional RR-centered di-isohexagonal orthogonal lattice.

Original entry on oeis.org

1, 18, 102, 318, 732, 1410, 2418, 3822, 5688, 8082, 11070, 14718, 19092, 24258, 30282, 37230, 45168, 54162, 64278, 75582, 88140, 102018, 117282, 133998, 152232, 172050, 193518, 216702, 241668, 268482, 297210, 327918, 360672, 395538, 432582, 471870, 513468, 557442, 603858, 652782, 704280
Offset: 0

Views

Author

Keywords

References

  • M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908.

Programs

  • GAP
    Concatenation([1], List([1..45], n-> n*(7+11*n^2) )); # G. C. Greubel, Nov 09 2019
  • Magma
    I:=[1, 18, 102, 318,732]; [n le 5 select I[n] else 4*Self(n-1) -6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..45]]; // Vincenzo Librandi, Jun 19 2012
    
  • Maple
    1, seq(11*k^3+7*k, k=1..45);
  • Mathematica
    CoefficientList[Series[1+6*x*(3+5*x+3*x^2)/(1-x)^4,{x,0,45}],x] (* Vincenzo Librandi, Jun 19 2012 *)
    LinearRecurrence[{4,-6,4,-1},{1,18,102,318,732},45] (* Harvey P. Dale, Apr 27 2017 *)
  • PARI
    vector(46, n, if(n==1,1,(n-1)*(7+11*(n-1)^2)) ) \\ G. C. Greubel, Nov 09 2019
    
  • Sage
    [1]+[n*(7+11*n^2) for n in (1..45)] # G. C. Greubel, Nov 09 2019
    

Formula

a(n) = n*(11*n^2 + 7) with n>0, with a(0)=1.
G.f.: 1 + 6*x*(3 + 5*x + 3*x^2)/(1-x)^4. - R. J. Mathar, Sep 04 2011
E.g.f.: 1 + x*(18 + 33*x + 11*x^2)*exp(x). - G. C. Greubel, Nov 09 2019