cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A071816 Number of ordered solutions to x+y+z = u+v+w, 0 <= x, y, z, u, v, w < n.

Original entry on oeis.org

1, 20, 141, 580, 1751, 4332, 9331, 18152, 32661, 55252, 88913, 137292, 204763, 296492, 418503, 577744, 782153, 1040724, 1363573, 1762004, 2248575, 2837164, 3543035, 4382904, 5375005, 6539156, 7896825, 9471196, 11287235, 13371756
Offset: 1

Views

Author

Graeme McRae, Jun 07 2002

Keywords

Comments

Number of 6-digit numbers in base n (with leading zeros allowed) such that the sum of the first three digits equals the sum of the last three digits.
a(n) = largest coefficient of (1+...+x^(n-1))^6. - R. H. Hardin, Jul 23 2009

Examples

			For n = 2 there are 20 ordered solutions (x,y,z,u,v,w) to x+y+z = u+v+w: (0,0,0,0,0,0), (0,0,1,0,0,1), (0,0,1,0,1,0), (0,0,1,1,0,0), (0,1,0,0,0,1), (0,1,0,0,1,0), (0,1,0,1,0,0), (0,1,1,0,1,1), (0,1,1,1,0,1), (0,1,1,1,1,0), (1,0,0,0,0,1), (1,0,0,0,1,0), (1,0,0,1,0,0), (1,0,1,0,1,1), (1,0,1,1,0,1), (1,0,1,1,1,0), (1,1,0,0,1,1), (1,1,0,1,0,1), (1,1,0,1,1,0), (1,1,1,1,1,1).
		

Crossrefs

First differences are in A070302.

Programs

Formula

The sum of the squares of the number of different 3-digit numbers that add up to k (summed over all possible k's) - cf. A071817.
a(n) = A077042(n,6).
a(n) = n*(11*n^4+5*n^2+4)/20. Recurrence: a(n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6). G.f.: x*(1+14*x+36*x^2+14*x^3+x^4)/(1-x)^6. - Vladeta Jovovic, Jun 09 2002

Extensions

New definition from Vladeta Jovovic, Jun 09 2002
Comment revised by Franklin T. Adams-Watters, Jul 27 2009
Edited by N. J. A. Sloane, Jul 28 2009

A070302 Number of 3 X 3 X 3 magic cubes with sum 3n.

Original entry on oeis.org

1, 19, 121, 439, 1171, 2581, 4999, 8821, 14509, 22591, 33661, 48379, 67471, 91729, 122011, 159241, 204409, 258571, 322849, 398431, 486571, 588589, 705871, 839869, 992101, 1164151, 1357669, 1574371, 1816039, 2084521, 2381731, 2709649
Offset: 1

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), May 10 2002

Keywords

Crossrefs

First differences are in A008528. Cf. A111085.

Programs

  • GAP
    List([1..40],n->25*n^2/4-7*n/2-11*n^3/2+11*n^4/4+1); # Muniru A Asiru, Apr 30 2018
  • Magma
    [25*n^2/4 -7*n/2 -11*n^3/2 +11*n^4/4+1: n in [1..40]]; // Vincenzo Librandi, Sep 05 2011
    
  • Maple
    seq(25*n^2/4-7*n/2-11*n^3/2+11*n^4/4+1,n=1..40); # Muniru A Asiru, Apr 30 2018
  • Mathematica
    Select[ CoefficientList[ Series[ (x^12 + 14x^9 + 36x^6 + 14x^3 + 1) / (1 - x^3)^5, {x, 0, 105}], x], # > 0 & ]
    (* Second program: *)
    LinearRecurrence[{5, -10, 10, -5, 1}, {1, 19, 121, 439, 1171}, 32] (* Jean-François Alcover, Jan 07 2019 *)
  • PARI
    for(n=1,30, print1(25*n^2/4 -7*n/2 -11*n^3/2 +11*n^4/4+1, ", ")) \\ G. C. Greubel, Apr 29 2018
    

Formula

G.f.: x*(x^4 + 14x^3 + 36x^2 + 14x + 1)/(1 - x)^5. [corrected by R. J. Mathar, Jan 26 2010]
a(n) = 25*n^2/4 - 7*n/2 - 11*n^3/2 + 11*n^4/4 + 1. - R. J. Mathar, Sep 04 2011
Sum_{n>=1} 1/a(n) = 2*Pi*(sqrt(17 + 4*sqrt(5)) * tanh(sqrt(17/44 - sqrt(5)/11)*Pi) - sqrt(17 - 4*sqrt(5))*tanh(sqrt(17/44 + sqrt(5)/11)*Pi)) / sqrt(95). - Vaclav Kotesovec, May 01 2018

Extensions

Edited by Robert G. Wilson v, May 13 2002
Showing 1-2 of 2 results.