cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A077042 Square array read by falling antidiagonals of central polynomial coefficients: largest coefficient in expansion of (1 + x + x^2 + ... + x^(n-1))^k = ((1-x^n)/(1-x))^k, i.e., the coefficient of x^floor(k*(n-1)/2) and of x^ceiling(k*(n-1)/2); also number of compositions of floor(k*(n+1)/2) into exactly k positive integers each no more than n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 3, 3, 1, 1, 0, 1, 6, 7, 4, 1, 1, 0, 1, 10, 19, 12, 5, 1, 1, 0, 1, 20, 51, 44, 19, 6, 1, 1, 0, 1, 35, 141, 155, 85, 27, 7, 1, 1, 0, 1, 70, 393, 580, 381, 146, 37, 8, 1, 1, 0, 1, 126, 1107, 2128, 1751, 780, 231, 48, 9, 1, 1, 0, 1, 252, 3139
Offset: 0

Views

Author

Henry Bottomley, Oct 22 2002

Keywords

Comments

From Michel Marcus, Dec 01 2012: (Start)
A pair of numbers written in base n are said to be comparable if all digits of the first number are at least as big as the corresponding digit of the second number, or vice versa. Otherwise, this pair will be defined as uncomparable. A set of pairwise uncomparable integers will be called anti-hierarchic.
T(n,k) is the size of the maximal anti-hierarchic set of integers written with k digits in base n.
For example, for base n=2 and k=4 digits:
- 0 (0000) and 15 (1111) are comparable, while 6 (0110) and 9 (1001) are uncomparable,
- the maximal antihierarchic set is {3 (0011), 5 (0101), 6 (0110), 9 (1001), 10 (1010), 12 (1100)} with 6 elements that are all pairwise uncomparable. (End)

Examples

			Rows of square array start:
  1,    0,    0,    0,    0,    0,    0, ...
  1,    1,    1,    1,    1,    1,    1, ...
  1,    1,    2,    3,    6,   10,   20, ...
  1,    1,    3,    7,   19,   51,  141, ...
  1,    1,    4,   12,   44,  155,  580, ...
  1,    1,    5,   19,   85,  381, 1751, ...
  ...
Read by antidiagonals:
  1;
  0, 1;
  0, 1, 1;
  0, 1, 1, 1;
  0, 1, 2, 1, 1;
  0, 1, 3, 3, 1, 1;
  0, 1, 6, 7, 4, 1, 1;
  ...
		

Crossrefs

Programs

Formula

By the central limit theorem, T(n,k) is roughly n^(k-1)*sqrt(6/(Pi*k)).
T(n,k) = Sum{j=0,h/n} (-1)^j*binomial(k,j)*binomial(k-1+h-n*j,k-1) with h=floor(k*(n-1)/2), k>0. - Michel Marcus, Dec 01 2012

A071817 Number of 3-digit numbers whose digits add up to n.

Original entry on oeis.org

1, 3, 6, 10, 15, 21, 28, 36, 45, 54, 61, 66, 69, 70, 69, 66, 61, 54, 45, 36, 28, 21, 15, 10, 6, 3, 1
Offset: 1

Views

Author

Graeme McRae, Jun 07 2002

Keywords

Comments

The sequence as a whole is palindromic; a(n) = a(28-n). - Jon E. Schoenfield, Nov 19 2016

Examples

			a(4) = 10 because there are 10 different 3-digit numbers whose digit sum is 4 (103, 112, 121, 130, 202, 211, 220, 301, 310, 400, which are the 3-digit elements of A052218).
		

Crossrefs

Cf. A071816.

Programs

  • Maple
    for i from 1 to 9*3 do a[i] := 0:od:for i from 100 to 999 dob := convert(i,base,10): s := sum(b[j],j=1..nops(b)):a[s] := a[s]+1:od:seq(a[j],j=1..3*9);

Formula

G.f.: (1 - x^10)^2*(x - x^10)/(1 - x)^3. - Miquel Cerda, Jul 09 2017

Extensions

Corrected and extended by Sascha Kurz, Feb 07 2003
Name clarified by Jon E. Schoenfield, Nov 20 2016

A277951 Triangle read by rows, in which row n gives coefficients in expansion of ((x^n - 1)/(x - 1))^6.

Original entry on oeis.org

1, 1, 6, 15, 20, 15, 6, 1, 1, 6, 21, 50, 90, 126, 141, 126, 90, 50, 21, 6, 1, 1, 6, 21, 56, 120, 216, 336, 456, 546, 580, 546, 456, 336, 216, 120, 56, 21, 6, 1, 1, 6, 21, 56, 126, 246, 426, 666, 951, 1246, 1506, 1686, 1751, 1686, 1506, 1246, 951, 666, 426, 246, 126, 56, 21, 6, 1
Offset: 1

Views

Author

Juan Pablo Herrera P., Nov 18 2016

Keywords

Comments

Sum of n-th row is n^6. The n-th row contains 6n-5 entries. Largest coefficients of each row are listed in A071816.
The n-th row is the sixth row of the n-nomial triangle. For example, row 2 (1,6,15,20,15,6,1) is the sixth row in the binomial triangle
T(n,k) gives the number of possible ways of randomly selecting k cards from n-1 sets, each with six different playing cards. It is also the number of lattice paths from (0,0) to (6,k) using steps (1,0), (1,1), (1,2), ..., (1,n-1).

Examples

			Triangle starts:
1;
1, 6, 15, 20, 15, 6, 1;
1, 6, 21, 50, 90, 126, 141, 126, 90, 50, 21, 6, 1;
1, 6, 21, 56, 120, 216, 336, 456, 546, 580, 546, 456, 336, 216, 120, 56, 21, 6, 1.
		

Crossrefs

Programs

  • Mathematica
    Table[CoefficientList[Series[((x^n - 1)/(x - 1))^6, {x, 0, 6 n}], x], {n, 10}] // Flatten
  • PARI
    row(n) = Vec(((1 - x^n)/(1 - x))^6);
    tabf(nn) = for (n=1, nn, print(row(n)));

Formula

T(n,k) = Sum_{i=k-n+1..k} A277950(T(n,i))

A133458 The size of the largest antichain in the 7-dimensional hypercubic lattice of size n; also the coefficient of x^floor(7*(n-1)/2) in (1 + x + ... + x^(n-1))^7.

Original entry on oeis.org

1, 35, 393, 2128, 8135, 24017, 60691, 134512, 273127, 512365, 908755, 1528688, 2473325, 3852919, 5832765, 8582336, 12354469, 17395119, 24072133, 32726960, 43874139, 57971221, 75715487, 97702640, 124853275, 157924585, 198105727
Offset: 1

Views

Author

Leonid Chindelevitch (leonidus(AT)mit.edu), Dec 22 2007

Keywords

Comments

The middle coefficients for dimension d>=1 are in A000012, A000027, A077043, A005900, A077044, A071816, here, the d-th row in A077042.
For d=8 the sequence starts 1, 70, 1107, 8092, 38165, 135954, 398567, 1012664, 2306025, ... and for d=9 it starts 1, 126, 3139, 30276, 180325, 767394, 2636263, 7635987, 19610233, ... - R. J. Mathar, Sep 04 2011

Crossrefs

Programs

  • Magma
    [-25*(-1)^n/512 +2261*n^2/23040 +25/512 +5887*n^6/11520 -77*(-1)^n*n^4/1536 +847*n^4/4608 -91*(-1)^n*n^2/1536 : n in [1..40]]; // Vincenzo Librandi, Sep 07 2011
  • Maple
    f:=(L,d)->(sum(x^k,k=0..L-1))^d; A:=[seq(coeff(f(j,7),x,floor(7*(j-1)/2)),j=1..25)];
    A133458 := proc(n) -25/512*(-1)^n +2261/23040*n^2 -91/1536*(-1)^n*n^2 -77/1536*(-1)^n*n^4 +847/4608*n^4 +5887/11520*n^6 +25/512 ; end proc: # R. J. Mathar, Sep 05 2011

Formula

From R. J. Mathar, Feb 19 2010: (Start)
a(n)= 2*a(n-1) +4*a(n-2) -10*a(n-3) -5*a(n-4) +20*a(n-5) -20*a(n-7) +5*a(n-8) +10*a(n-9) -4*a(n-10) -2*a(n-11) +a(n-12).
G.f.: x*(1+33*x +319*x^2 +1212*x^3 +2662*x^4 +3320*x^5 +2662*x^6 +1212*x^7 +319*x^8 +33*x^9 +x^10)/ ((1+x)^5 * (1-x)^7).
a(n) = -25*(-1)^n/512 +2261*n^2/23040 +25/512 +5887*n^6/11520 -77*(-1)^n*n^4/1536 +847*n^4/4608 -91*(-1)^n*n^2/1536. (End)

Extensions

More terms from R. J. Mathar, Feb 19 2010

A229735 151*n^7/315+2*n^5/9+7*n^3/45+n/7.

Original entry on oeis.org

0, 1, 70, 1107, 8092, 38165, 135954, 398567, 1012664, 2306025, 4816030, 9377467, 17232084, 30162301, 50651498, 82073295, 128912240, 197018321, 293897718, 429042211, 614299660, 864287973, 1196854978, 1633586615, 2200365864, 2927984825, 3852812366, 5017519755, 6471866692, 8273550157, 10489118490
Offset: 0

Views

Author

N. J. A. Sloane, Oct 01 2013

Keywords

Crossrefs

Cf. A071816.

Programs

  • Magma
    [151*n^7/315+2*n^5/9+7*n^3/45+n/7: n in [0..30]]; // Vincenzo Librandi, Oct 06 2013
  • Mathematica
    Table[151 n^7/315 + 2 n^5/9 + 7 n^3/45 + n/7, {n, 0, 40}] (* Vincenzo Librandi, Oct 06 2013 *)

Formula

G.f.: x*(x^6+62*x^5+575*x^4+1140*x^3+575*x^2+62*x+1) / (x-1)^8. - Colin Barker, Oct 06 2013

A071009 Number of solutions (x,y,z,u,v,w) to x+y+z = u+v+w, 0<=x,y,z,u,v,w<=n-1, x>=y>=z, u>=v>=w.

Original entry on oeis.org

1, 4, 16, 48, 119, 256, 500, 900, 1525, 2456, 3796, 5664, 8207, 11588, 16004, 21672, 28845, 37800, 48856, 62356, 78691, 98280, 121592, 149128, 181445, 219132, 262840, 313256, 371131, 437256, 512492, 597740, 693977, 802224, 923580
Offset: 1

Views

Author

Vladeta Jovovic, Jun 10 2002

Keywords

Crossrefs

Cf. A071816.

Formula

Recurrence: a(n) = 3*a(n-1)-a(n-2)-4*a(n-3)+2*a(n-4)+2*a(n-5)+2*a(n-6)-4*a(n-7)-a(n-8)+3*a(n-9)-a(n-10). G.f.: x*(1+x+5*x^2+8*x^3+5*x^4+x^5+x^6)/(1+x+x^2)/(1+x)^2/(1-x)^6.
Showing 1-6 of 6 results.