cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008616 Expansion of 1/((1-x^2)(1-x^5)).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 4, 3, 4, 3, 4, 4, 4, 4, 4, 4, 5, 4, 5, 4, 5, 5, 5, 5, 5, 5, 6, 5, 6, 5, 6, 6, 6, 6, 6, 6, 7, 6, 7, 6, 7, 7, 7, 7, 7, 7, 8, 7, 8, 7, 8, 8, 8, 8, 8, 8, 9, 8, 9, 8, 9, 9, 9, 9, 9, 9, 10, 9, 10, 9, 10, 10, 10, 10, 10, 10
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n into parts of size two and five.
It appears that, for n >= 2, a(n-2) is also (1) the number of partitions of 3n that are 6-term arithmetic progressions and (2) floor(n/2) - floor(2n/5). - John W. Layman, Jun 29 2009

References

  • G. E. Andrews, K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004. page 30, Exercise 48.
  • D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 100.

Crossrefs

Cf. A008615. - John W. Layman, Jun 29 2009

Programs

  • Magma
    m:=100; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x^2)*(1-x^5)))); // Wesley Ivan Hurt, Dec 27 2021
  • Mathematica
    CoefficientList[Series[1 / ((1 - x^2) (1 - x^5)),{x, 0, 100}], x] (* Vincenzo Librandi, Jun 21 2013 *)
  • PARI
    {a(n) = if( n<-6, -a(-7 - n), polcoeff( 1 / (1 - x^2) / (1 - x^5) + x * O(x^n), n))} /* Michael Somos, Jan 25 2005 */
    
  • PARI
    a(n) = floor(n/10+(3+(-1)^n)/4) \\ Charles R Greathouse IV, Jun 19 2013
    

Formula

G.f.: 1/((1-x^2)(1-x^5)) = 1/((x-1)^2*(1+x)*(1+x+x^2+x^3+x^4)).
Euler transform of finite sequence [0, 1, 0, 0, 1].
a(n) = -a(-7 - n) = a(n - 10) + 1 = a(n - 2) + a(n - 5) - a(n - 7). - Michael Somos, Jan 25 2005
A000217(a(n)) = A025810(n). - Michael Somos, Dec 15 2002
a(n) = 7/20 + n/10 + (-1)^n/4 + (A105384(n) + 2*(A010891(n) + A105384(n+4)))/5. - R. J. Mathar, Jun 28 2009
a(n) = floor(n/10 + (3 + (-1)^n)/4). - Tani Akinari, Jun 20 2013