cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008631 Molien series for alternating group Alt_8 (or A_8).

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 29, 40, 52, 70, 89, 116, 146, 186, 230, 288, 352, 434, 525, 638, 764, 919, 1090, 1297, 1527, 1802, 2105, 2464, 2860, 3324, 3835, 4428, 5081, 5834, 6659, 7604, 8640, 9819, 11107, 12566, 14158, 15951, 17904, 20093, 22474, 25133
Offset: 0

Views

Author

Keywords

References

  • D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 105.

Crossrefs

Different from A008637.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1+x^28)/(&*[1-x^j: j in [1..8]]) )); // G. C. Greubel, Feb 02 2020
    
  • Maple
    seq(coeff(series( (1+x^28)/mul((1-x^j), j=1..8)), x, n+1), x, n), n = 0..50); # G. C. Greubel, Feb 02 2020
  • Mathematica
    CoefficientList[Series[(1+x^28)/Product[(1-x^j), {j,1,8}], {x,0,50}], x] (* G. C. Greubel, Feb 02 2020 *)
    LinearRecurrence[{1,1,0,1,-2,-1,-1,-1,1,1,2,3,0,-1,-1,-4,-1,-1,0,3,2,1,1,-1,-1,-1,-2,1,0,1,1,-1},{1,1,2,3,5,7,11,15,22,29,40,52,70,89,116,146,186,230,288,352,434,525,638,764,919,1090,1297,1527,1802,2105,2464,2860},70] (* Harvey P. Dale, May 12 2022 *)
  • PARI
    Vec( (1+x^28)/prod(j=1,8, 1-x^j) +O('x^50) ) \\ G. C. Greubel, Feb 02 2020
    
  • Sage
    def A008631_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x^28)/product(1-x^j for j in (1..8)) ).list()
    A008631_list(70) # G. C. Greubel, Feb 02 2020

Formula

G.f.: (1+x^28)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^7)*(1-x^8)).