cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A008637 Number of partitions of n into at most 8 parts.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 29, 40, 52, 70, 89, 116, 146, 186, 230, 288, 352, 434, 525, 638, 764, 919, 1090, 1297, 1527, 1801, 2104, 2462, 2857, 3319, 3828, 4417, 5066, 5812, 6630, 7564, 8588, 9749, 11018, 12450, 14012, 15765, 17674, 19805, 22122
Offset: 0

Views

Author

Keywords

Comments

For n>7: also number of partitions of n into parts <= 8: a(n)=A026820(n,8). - Reinhard Zumkeller, Jan 21 2010
Molien series for finite Coxeter group of type A_8.
Number of different distributions of n+36 identical balls in 8 boxes as x,y,z,p,q,m,n,h where 0 < x < y < z < p < q < m < n < h. - Ece Uslu and Esin Becenen, Jan 11 2016

Examples

			There are a(9)=29 partitions of 9 into parts less than or equal to 8. These are (81)(72)(711)(63)(621)(6111)(54)(531)(522)(5211)(51111)(441)(432)(4311)(4221)(42111)(411111)(333)(3321)(33111)(3222)(32211)(321111)(3111111)(22221)(222111)(2211111)(21111111)(111111111). - _David Neil McGrath_, Apr 14 2015
a(3) = 3, i.e., {1,2,3,4,5,7,8,9}, {1,2,3,4,5,6,8,10}, {1,2,3,4,5,6,7,11}: number of different distributions of 39 identical balls in 8 boxes as x,y,z,p,q,m,n,h where 0 < x < y < z < p < q < m < n < h. - _Ece Uslu_, Esin Becenen, Jan 11 2016
		

References

  • A. Cayley, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 10, p. 415.
  • H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 2.

Crossrefs

Cf. A008284.
Strictly different from A008631, although they have similar descriptions.

Programs

  • Maple
    1/(1-x)/(1-x^2)/(1-x^3)/(1-x^4)/(1-x^5)/(1-x^6)/(1-x^7)/(1-x^8)
    with(combstruct):ZL9:=[S,{S=Set(Cycle(Z,card<9))}, unlabeled]:seq(count(ZL9,size=n),n=0..47); # Zerinvary Lajos, Sep 24 2007
    B:=[S,{S = Set(Sequence(Z,1 <= card),card <=8)},unlabelled]: seq(combstruct[count](B, size=n), n=0..47); # Zerinvary Lajos, Mar 21 2009
  • Mathematica
    CoefficientList[ Series[ 1/ Product[ 1 - x^n, {n, 1, 8} ], {x, 0, 60} ], x ]
  • Maxima
    a(n):=floor((-1)^n*((n+1)*(-1)^floor((n+2)/3)+(2*n+3)*(-1)^floor((n+1)/3)+(n+2)*(-1)^floor(n/3))/972+(n+2)*((-1)^n+1)*(-1)^(n/2)/512+(n+18)*(6*n^6+648*n^5+27018*n^4+545616*n^3+5481213*n^2+25163028*n+39226571)/1219276800+(n+1)*(n^2+53*n+826)*(-1)^n/36864+1/2); /* Tani Akinari, Oct 25 2012 */

Formula

G.f.: 1/((1-t)*(1-t^2)*(1-t^3)*(1-t^4)*(1-t^5)*(1-t^6)*(1-t^7)*(1-t^8)). - N. J. A. Sloane, Jan 09 2016
a(n) = A008284(n+8, 8), n >= 0.
a(n) = floor((-1)^n*((n+1)*(-1)^(floor((n+2)/3)) + (2*n+3)*(-1)^(floor((n+1)/3)) + (n+2)*(-1)^(floor(n/3)))/972 + (n+2)*((-1)^n+1)*(-1)^(n/2)/512 + (n+18)*(6*n^6 + 648*n^5 + 27018*n^4 + 545616*n^3 + 5481213*n^2 + 25163028*n + 39226571)/1219276800 + (n+1)*(n^2+53*n+826)*(-1)^n/36864+1/2). (See link.) - Tani Akinari, Oct 26 2012
a(n) = a(n-1) + a(n-2) - a(n-5) - a(n-7) - a(n-9) + a(n-11) + 2*a(n-12) + a(n-13) + a(n-15) - a(n-16) - a(n-17) - 2*a(n-18) - a(n-19) - a(n-20) + a(n-21) + a(n-23) + 2*a(n-24) + a(n-25) - a(n-27) - a(n-29) - a(n-31) + a(n-34) + a(n-35) - a(n-36). - David Neil McGrath, Apr 14 2015
a(n+8) = a(n) + A008636(n). - Ece Uslu, Esin Becenen, Jan 11 2016
From Vladimír Modrák, Jul 30 2022: (Start)
a(n) = Sum_{i_1=0..floor(n/3)} Sum_{i_2=0..floor(n/4)} Sum_{i_3=0..floor(n/5)} Sum_{i_4=0..floor(n/6)} Sum_{i_5=0..floor(n/7)} Sum_{i_6=0..floor(n/8)} ceiling((max(0, n + 1 - 3*i_1 - 4*i_2 - 5*i_3 - 6*i_4 - 7*i_5 - 8*i_6))/2).
a(n) = Sum_{i_1=0..floor(n/4)} Sum_{i_2=0..floor(n/5)} Sum_{i_3=0..floor(n/6)} Sum_{i_4=0..floor(n/7)} Sum_{i_5=0..floor(n/8)} floor(((max(0, n + 3 - 4*i_1 - 5*i_2 - 6*i_3 - 7*i_4 - 8*i_5))^2+4)/12). (End)

Extensions

More terms from Robert G. Wilson v, Dec 11 2000

A139672 Convolution of A008619 and A001400.

Original entry on oeis.org

1, 2, 5, 9, 17, 27, 44, 65, 97, 136, 191, 257, 346, 451, 587, 746, 946, 1177, 1461, 1786, 2178, 2623, 3151, 3746, 4443, 5223, 6126, 7131, 8283, 9558, 11007, 12603, 14403, 16377, 18588, 21003, 23692, 26618, 29858, 33372, 37244, 41430, 46022, 50972
Offset: 1

Views

Author

Alford Arnold, Apr 29 2008, May 01 2008

Keywords

Comments

This is row 21 of a table of values related to Molien series. It is the product of the sequence on row 3 (A008619) with the sequence on row 7 (A001400).
This table may be constructed by moving the rows of table A008284 to prime locations and generating the composite locations by multiplication in a manner similar to the calculation illustrated in the present sequence.
Rows 1 thru 20 and 22 thru 25 are as follows:

Programs

  • Maple
    a:= proc(n) local m, r; m:= iquo (n, 12, 'r'); r:= r+1; (19+ (145+ (260+ 15* (r+9)*r+ (405+ 90*r+ 216*m) *m) *m) *m) *m/5+ [0, 1, 2, 5, 9, 17, 27, 44, 65, 97, 136, 191][r]+ [0, 16, 37, 77, 128, 208, 307, 447, 616, 840, 1105, 1441][r]*m/2+ [0, 52, 119, 213, 328, 476, 651, 865, 1112, 1404, 1735, 2117][r]*m^2/2 end: seq (a(n), n=1..50); # Alois P. Heinz, Nov 10 2008
  • Mathematica
    CoefficientList[Series[x/((x^2+x+1)(x^2+1)(x+1)^3 (x-1)^6),{x,0,50}],x] (* or *) LinearRecurrence[{2,1,-3,0,-1,2,2,-1,0,-3,1,2,-1},{0,1,2,5,9,17,27,44,65,97,136,191,257},50] (* Harvey P. Dale, Feb 17 2016 *)

Formula

G.f.: x/((x^2+x+1)*(x^2+1)*(x+1)^3*(x-1)^6). - Alois P. Heinz, Nov 10 2008
a(n)= -A049347(n)/27 +(2*n+11)*(6*n^4+132*n^3+914*n^2+2068*n+1055)/69120 -(-1)^n*(51/512+n^2/256+11*n/256+A057077(n)/32 ). - R. J. Mathar, Nov 21 2008

Extensions

More terms from Alois P. Heinz, Nov 10 2008
Corrected A-number in definition. Added formula. - R. J. Mathar, Nov 21 2008
Showing 1-2 of 2 results.